报告时间:5月21号(周一)9:40——10:40
报告地点:下沙校区D104党员之家
Abstract:
Consider an autonomous ordinary differential equation in R^n that has a homoclinic solution asymptotic to a hyperbolic equilibrium. The homoclinic solution is degenerate in the sense that the linear variational equation has 3 bounded, linearly independent solutions. We study bifurcation of the homoclinic solution under periodic perturbations. Using exponential dichotomies and Lyapunov-Schmidt reduction, we obtain general conditions under which the perturbed system can have transverse homoclinic solutions and nearby periodic or chaotic solutions.
个人简介:
朱长荣,重庆大学数学与统计学院教授,博导,2012年教育部新世纪人才支持计划;2010年四川大学优秀博士学位论文一等奖;2010年全国优秀博士学位论文提名,先后在J. Diff. Equs.、Ann. I. H.Poincare-AN、Proc. Roy. Soc. Edinburgh Sect. A、Nonlinearity、Disc. Cont. Dyn. Sys.、Sci. China A Math.等多个国际国内有重要影响力的期刊上发表多篇论文。先后主持国家自然科学基金面上项目,重庆市自然科学基金项目等多项基金。
地址:杭州市余杭区余杭塘路2318号勤园19号楼
邮编:311121 联系电话:0571-28865286
Copyright © 2020 杭州师范大学物理学院
公安备案号:33011002011919 浙ICP备11056902号-1