时间:12月24日(周二)09:30-10:30
地点:勤园21号楼306学术报告厅
主讲人:彭跃军,法国克莱蒙奥佛涅大学教授。1986年在复旦大学数学系获得硕士学位,1992年在法国里昂第一大学获得博士学位。彭跃军教授的研究工作涉及守恒律方程组的弱熵解、拟线性双曲方程组的光滑解、离子体和半导体科学中流体动力学模型的渐近极限以及偏微分方程初始层和边界层的分析。在Annales IHP Analyse Non Linéaire, J. Math. Pures Appl., SIAM J. Math. Anal., J. Diff. Equations, Comm. Part. Diff. Equations等国际高水平期刊上发表70余篇SCI论文。著有《Some Problems on Nonlinear Hyperbolic Equations and Applications》,由World Scientific Publishing Company出版。
内容简介:Consider the approximation of Navier-Stokes equations for a Newtonian fluid by Euler type systems with relaxation. This requires to decompose the second-order derivative terms of the velocity into first-order terms. We use Hurwitz-Radon matrices for this decomposition. We prove the convergence of the approximate systems to the Navier-Stokes equations locally in time for smooth initial data and globally in time for initial data near constant equilibrium states.
地址:杭州市余杭区余杭塘路2318号勤园19号楼
邮编:311121 联系电话:0571-28865286
Copyright © 2020 杭州师范大学物理学院
公安备案号:33011002011919 浙ICP备11056902号-1