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Abstract. We are concerned with the sonic-supersonic structures extracted from the transonic
flow problems in gas dynamics. A local classical supersonic solution for the two-dimensional steady
full Euler equations is established in an angular region bounded by the sonic curve and the char-
acteristic curve. In order to overcome the challenges caused by the coupling of nonlinearity and
degeneracy at the corner point, we develop a new iteration pattern to show the convergence of the
iterative sequence generated by the Euler equations in terms of a partial hodograph coordinate sys-
tem. The pattern developed here will be useful for studying the degenerate mixed-type boundary
value problems for other related nonlinear hyperbolic systems.
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1. Introduction. The transonic flow problems are one kind of the most impor-
tant problems in mathematical fluid dynamics, since this kind of problem appears in
various important physical situations. As early as the 1940s, Courant and Friedrichs
[15] described in the famous book Supersonic Flow and Shock Waves that for a com-
pressible flow passing a duct, if the Mach number is not much below one, then the
flow may change to supersonic somewhere on the surface of the duct due to the con-
vexity of the duct. It is well-known that the supersonic region is a bubble above the
wall of the duct. See Figure 1 for an illustration. Similar situations occur as a flow
passes over an airfoil; see, among others, the monographs of Shapiro [38], Bers [3],
and Kuz'min [27].

The existence of solutions for such transonic flow problems has been extensively
studied but still remain open in the “global” transonic sense mathematically; see the
review paper [12]. Generally speaking, a transonic structure includes the subsonic
and supersonic parts which are separated by a curve composed by sonic curves or
transonic shocks. Due to the nonlinearity of the governing system, the separated
curve in general is a free boundary which is determined together with the solutions.
Moreover, the governing system may change types around a sonic curve and is degen-
erate on the sonic curve. These features cause the transonic flow problems generally
more difficult than the study of problems in purely subsonic or purely supersonic
regions.
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Fic. 1. Transonic phenomena in a duct.

There has been a great amount of effort and discussion on the transonic flow
problem described in Figure 1 since the 1950s. Some explicit examples of transonic
flows were presented in [3, 38, 27] and the existence conditions of continuous sonic-
supersonic flows were given in [2]. In [34, 35], Morawetz indicated that a smooth
transonic flow does not exist in general, which means there may exist a transonic
shock in the downstream flow. The existence of weak solutions in the compensated-
compactness framework was studied in [36, 5, 9]. For the subsonic side, the existence
of global subsonic-sonic solutions have been intensively investigated in the past few
years. Xie and Xin [43] verified the existence of global solutions in a subsonic-sonic
part of the nozzle. The well-posedness for the subsonic and subsonic-sonic flows with
critical mass flux was solved in [44] for the isentropic case and in [6] for the full
Euler equations. In [8], Chen, Huang, and Wang discussed the subsonic-sonic limit of
approximate solutions for the multidimensional full Euler equations. The properties
of sonic curves were discussed for the two-dimensional (2-D) steady smooth subsonic-
sonic and transonic potential flows in [41]. In a recent paper, Wang and Xin [42]
established the existence and uniqueness of smooth transonic flows of Meyer type in
Laval nozzles for the potential equation. We refer the reader to [40, 4, 16, 17, 18] for
more related results about the subsonic-sonic solutions and to [7, 10, 11, 13, 20, 45]
and references therein for the study of transonic shocks arising in supersonic flow past
a blunt body. It is worthwhile to mention the work of Elling and Liu [19] about the
theory of ellipticity principle for the self-similar potential flows. As for the supersonic
side, the relevant results are still very limited. In [46], Zhang and Zheng constructed a
local sonic-supersonic classical solution for the isentropic irrotational Euler equations.
For the full Euler equations, Hu and Li studied the local existence of classical sonic-
supersonic solutions in [22] and further established a global smooth supersonic-sonic
solution and analyzed solution behaviors near the sonic curve in [23]. The results of
the 2-D pseudosteady Euler equations can be consulted in [47, 25] for the existence
of sonic-supersonic solutions and in [24, 31, 39] for the existence of semihyperbolic
patch solutions.

In this paper, we are interested in the existence of classical supersonic solutions
near the sonic curve in the compressible flows. Specifically, we consider a degenerate
mixed-type boundary value problem in an angular region bounded by a characteris-
tic curve and a sonic curve, which, as illustrated in Figure 1, is extracted from the
transonic flow problems. One of our motivations for studying such problems arises
from the Frankl problem, proposed by Frankl [21], which is to find an airfoil’s arc DE
for the correctness of the transonic flow problem in the class of smooth solutions; see
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F1G. 2. The Frankl problem: prescribed the slip condition on the arcs AD and E’E’, find airfoil’s

arc DE which is free of boundary conditions for the correctness of the problem in the class of smooth
solutions.

Figure 2. If the solutions in regions ADB and CEB are obtained, then one needs
to solve a similar degenerate problem to determinate the arc DE. The reader may
consult Morawetz [33] and Cook [14] for some uniqueness results to the Frankl prob-
lem of the linearized equation; also see Kuz’'min [27] for the uniqueness discussion on
a modification of the Frankl problem. In [28], Li and Hu studied such mixed-type
degenerate problems for the isentropic irrotational Euler equations by introducing a
set of variables to transform the Euler equations into a linear system. However, the
entropy is usually not uniform in the transonic flow and the flow is not irrotational
[32]. Thus it is more suitable to adopt the full system of Euler equations to char-
acterize the transonic flow problems. We shall establish a classical sonic-supersonic
solution to the degenerate mixed-type boundary value problem for the 2-D steady
full Euler equations. Due to the effects of entropy and vorticity, the full Euler equa-
tions cannot be transformed into a linear system, which is much different from the
isentropic irrotational case handled in [28].
The 2-D steady full Euler equations for perfect gases read that

pu)e + (pv)y = 0,

(
(1) Epu + )z + (puv)y =0,
(

puv)z + (pv? + p)y, = 0,
pEu+ pu)s + (pEv + pv)y =0,

where p, (u,v), p, and E are the density, the velocity, the presbure and the specific
total energy, respectively. For polytropic gases, £ = *” + ﬁ;, where v > 1 is
the adiabatic gas constant. The eigenvalues of system (1.1) are

(1.2) Ao=A =2, A wey/g? — ¢
u?

u? — c2

)

where ¢ = /vp/p is the speed of sound and ¢ = vu? + v? denotes the flow speed.
From the expressions of A, it is obvious that the flow may be transonic: supersonic
for ¢ > ¢, subsonic for ¢ < ¢, and sonic for ¢ = ¢. The set of points on which ¢ = q is
called the sonic curve. We consider in this paper the degenerate mixed-type problem
as follows.
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PROBLEM 1. Let BA and B BC be two pieces of smooth curves; see Figure 1. We
assign b the boundary data on BA and BC such that BA is a AL -characteristic curve
and BC is a sonic curve. We look for a classical supersonic solution for (1.1) in the
region ABC' near point B.

Since BA is a characteristic curve and system (1.1) is degenerate on BC , Problem
1 is also called the degenerate Cauchy—Goursat problem, which is a fundamental one
for the mathematical theory of transonic flow in gas dynamics. Our other motivation
for discussing this kind of problems is to construct a transonic shock in the downstream
region by assigning appropriate boundary data on BA and BC in the future. At
the first glimpse, Problem 1 seems to be closely related to the degenerate initial
value problem for the full Euler equations (1.1) investigated in Hu and Li [22]; one
may naturally expect to solve this problem by learning from the previous approach.
However, the existence framework presented in [22] cannot deal with the mixed-type
boundary value problems directly. The main reason is that a key metric space adopted
in [22] cannot be applied for the degenerate initial boundary value problem due to

the influence of the characteristic boundary BA. Moreover, the difference between
the different boundary values produced in the iteration process needs to be estimated
carefully. In the current paper, we create a new fixed point iteration pattern to explore
the local well-posedness of the degenerate mixed-type boundary value problems for
the Euler equations. This pattern can also be applied for the other relevant transonic
problems in gas dynamics, for example, the problem of transonic flow over a porous
boundary [26, 27]. It is worth pointing out that, until now, there has been no general
effective theory to study the degenerate mixed-type boundary value problems for the
nonlinear hyperbolic problems. The framework presented here may be regarded as a
meaningful trial, which is one of the most important contributions of the paper.

In order to capture the singular structures near the sonic curve, we first follow Hu
and Li [22] to adopt the angle variables as the auxiliary coordinate system to transform
the full Euler equations (1.1) into a new nonlinear system. This new system has an
explicitly singularity-regularity structure. Based on the new system, we construct
a nonlinear system of integral equations which subsequently generates an iterative
sequence. The focus is on establishing the convergence of the iterative sequence.
The approach in this paper is partly inspired by the work done by Berezin [1] and
Protter [37] for studying the well-posedness of the Cauchy problem to the second-
order linear degenerate hyperbolic equation. Compared to the linear case, there are
at least two key challenges that must be addressed for the nonlinear iterative problem
in our paper. First, since the eigenvalues of the system depend on the solutions, the
characteristic curves also need to be iterated, which results in the integration path
begin different at each iteration. To verify the convergence of the iterative sequence,
we need to carefully analyze the difference of iterative fluctuations caused by the
different integration paths. Second, for the mixed-type boundary value problem, the
data on the characteristic boundary cannot be homogenized, which implies that the
values of the iterative sequence on the boundary are different. Due to the degeneracy
on the sonic curve, the difference between these different boundary values needs to be
estimated at a certain order depending on the degree of degradation. The coupling of
nonlinearity and singularity in the system makes the iteration process mathematically
rather more difficult and complex.

The rest of the paper is organized as follows. In section 2, we formulate the
problem and state the main result by introducing the angle variables and their char-
acteristic decompositions. In section 3, we derive a new nonlinear system with clearly
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singularity-regularity structures in a partial hodograph plane. Moreover, the exis-
tence and uniqueness of classical solutions to the degenerate mixed-type boundary
value problem for the new system are also established in this section by using the
iteration method. Finally, in section 4, we return the solution in the partial hodo-
graph plane to that in the original physical variables to complete the proof of the
main result.

2. The problem in terms of angle variables and the main result. This
section is devoted to formulating the degenerate mixed-type boundary value problem
for the full Euler equations (1.1). In order to state the main result clearly, we in-
troduce the Mach angles, the flow angles, the entropy, and the Bernoulli quantities
as dependent variables to rewrite the governing equations. The basic characteristic
decompositions in terms of these variables are provided for later restating the problem
in a partial hodograph plane.

2.1. Preliminary characteristic decompositions. For smooth flows, the full
Euler equations (1.1) can be written as

(2.1) AW, +BW, =0,
v p 0 0 v 0 p O P
0 u 0 2 0 v 0 0 u
— P = =
A 00 uo | B 00 v o [ w v
0 p 0 wu 0 0 vvp v p

The eigenvalues A are defined by finding the roots of ||[AA — B|| = 0, as expressed in
(1.2). The four corresponding left eigenvectors are

by = (0,u,v,0), £ =(c*0,0,-1), L= (0,—AsLyp,yp,Aru—v).
By a standard calculation, one obtains the characteristic form of (2.1)

uSy +vSy, =0,
uB, +vB, =0,
(22) —CpUUy + cpuv, £ VU2 + v2 — 2p,

+A 4 (—cpvuy + cpuvy = Vu? + 0% —c?py) =0

where S = pp~7 is the entropy function and B = #—i— le is the Bernoulli function.

Introduce the flow angle function 6 and the Mach angle function w as follows:

(2.3) tand = E, sinw = <.
u q

We denote

(2.4) a:=04+w, p:=0—-w.

One can easily check by the expressions of (1.2) that 6, «, and § are the inclination
angles of characteristics, that is,

(2.5) tand = Ag = Ay, tana=A,, tanf=A_.

In addition, the speed of sound ¢ and the velocity (u,v) can be written as functions
of , w, and B,
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2k sin? w cos 0 sin 6

(2.6) c={\|———B, u=c——, v=c
K+ sin” w Sin w

sinw’

where k = (7 —1)/2. Furthermore, as in previous papers of Li and Zheng [29, 30], we
introduce the normalized directional derivatives along the characteristics

(2.7) 9% =cosad, +sinad,, O =cosPd; +sinBo,, 9°=cosbd, + sinbd,,
from which one has

_sin BOT —sinad~ cos 0T —cosad” - O +0~

(28) 0 = sin(2w) Oy =

)

sin(2w) 2cosw

Then system (2.2) can be rewritten as a new system in terms of variables (S, B, 6, w),

(?05 =0,
8°B = 0,
(2.9) 010 + o gt = i) ( 9 InS —dt In B>,

Kk~+sin? w

1
ol
00— 0w = 22 (10 s -0 ).

Denote )
Q= <lnSlnB>
4K
We can acquire a subsystem from (2.9),
@09 =0, B
(2.10) ot + %(Trw = sin(2w)0*Q,
00 — p— 0~ w = —sin(2w)9~Q,
where w = sinw. Hereafter the mixed variables w and w are used in a system

for convenience. Once we get (2,6, w) from (2.10), the entropy function S and the
Bernoulli function B can be obtained by solving two linear problems 9°S = 0 and
"B = 0 with the corresponding boundary values.

We need more interpretation for the quantity Q. Making use of (2.8) and (2.9),
we find that, for any smooth function I satisfying 9°I = 0, we have

(F)-e oo-(:5m)"

The detailed derivation of the above equation can refer to Hu and Li [22]. Thus for
the quantity €, it follows that

= ot
2.11 0 — H = )

(2.11) d 0, o)
Then we apply the fact 9~ Q = —01 to obtain a new system in terms of the variables
(H7 97 w)7

=0
(2.12) 70 + 2540w = sin(2w) G (w) H,

970 — 2540w = sin(2w)G(w) H.
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We further introduce a new variable

2
(2.13) ==t <w> —Q

4k K+ w?
to rewrite the last two equations of (2.12) as

970 + sin(2w) 9"
0~

(2.14) 070 — sin(2w)

[I] [I]

The relations between 0Fw and 0FZ are

(2.15) §tw = w[éig + HG(w)].

COsw

Moreover, in terms of =, one has a pretty symmetrical characteristic decomposition

(2.16)
0~ 0tE = W—jﬁm[é Z — cos(2w)0~E] + C0§2 = [0TE + cos?(2w)0~ T,
0+0= = Sl mNCH (5o5 _ cos(2w)TE] + 2E (07 + cos?(2w) ).

The above characteristic decomposition for Z can be gained by performing a direct
calculation or consulting the previous paper Hu and Li [22]. Set U = 9= and
V = 0~ E. We arrive at the system in terms of (H,U, V) by (2.12) and (2.16),

0°H =0,

(2.17) U = ELH 0ICH 7 _ co5(20)V] +

Y—[U + cos?(2w)V],

COB w

Gty = Voletsin® GH 1y og(90,)U] +

cos? w

[V + cos?(2w)U].

cos2

2.2. The mixed-type boundary data and the main result. In this sub-
section, we set up the mixed-type boundary value problem 1 in terms of the angle
variables by specifying boundary conditions on BC and BA. Let BC : y = o(x) (z €

[xB,zc]) be a smooth curve. We assume that the curve BC and the boundary values

(2,0, 0)|56 = (Q,0,%)(z) satisfy

(2.18) p(x) € C¥([zp,20)),  (2,0)(z) € C*([xp,ac)), @(x) =1,

which mean that the curve BC is a smooth sonic curve. Let AB : z = Y(y) (y €

(ya,ys]) be a smooth curve satisfying zp = 9(yp). Suppose that the curve AB and
the boundary values (2,0, @)|5 = (Q,0,%)(y) satisty

(2.19)
b(y) € C'((ya,yB)) N C*((yasy)),  (2,0,@)(y) € CH((ya,y8)) N C*((ya,yB)),

6(y) = arccot’ (y) — arcsin(y), w@(ys) =1,
and

(2.20) Wop) =Qyz), Uws) =0s) iz @8) = i v8):

0+ VE e = 25VT— 520 Vye (ya,yn)
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From (2.19), we see that the curve BA is a positive characteristic and the point B is
sonic. The conditions in (2.20) are the basic compatibility conditions at the point B
and the curve BA. Moreover, resolving w = w(y) on BA obtains y = g(cosw). We
require the following regularity conditions to hold:

o) ho(cos@) = ﬁm@(cos@)) € C2([0, cos@(A))),
bo(cos@) := \/1+1(w')2 (2@(2;@2) - Q’) (g(cos@)) € C3([0, cos@(A))).

The regularity conditions (2.21) imply that the functions H and U (see subsection
2.3) are, respectively, C2- and C3-continuous at the point B along the boundary curve
BA. We comment that the derivatives of ho(y) and bo(y) may have singularities at
yp, while the functions ho(§(@)) and by(y(@)) are required to be C% and C? smooth
at cosw = 0, respectively. These requirements can be achievable by the degeneracy
of the derivative of §(cos®).

The main result of this paper can be stated as follows.

THEOREM 2.1. Let the boundary conditions (2.18)—(2.19) and the basic compat-
ibility conditions (2.20) and the regularity conditions (2.21) hold. Suppose that the
higher-order compatibility conditions (C) hold at the corner point (the conditions (C)
are given in (3.19) in subsection 3.1). Moreover, we assume that

V'(yp) <0, Y(xp)>0, (xp)<0,
(2.22) A . . .
(¢'sinf + cos)(zp) >0, (¢ cosf —sinb)(zp) > 0.

Then system (2.10) with the boundary data
(©,0, ) 2.0,%)(x), (2,0,@) 2,6, )(y),

admits a classical supersonic solution (2,0, w) in the angular region ABC' around the
point B.

l5e = ( l52 = (

2.3. The boundary information for (H,U, V). For later applications, we

derive in this subsection the data of (H,U,V) on the curves BA and BC from the
boundary values of (2,6, w).

We first check the compatibility conditions of (2.10) at point B. Obviously, it
follows from (2.18)-(2.20) that (Q,0,@)(zp) = (Q,0,%)(y). Moreover, we claim
that 0°Q = 0 at B. In fact, along the curves BC and BA, one has

Q+¢'Q =0, Q+¢'Q =0,
from which we get
Q/ _ /Q/ Q/ _ /Q/
¥ -ty Y ovsY g,
1— (p/wl 1— (plw/
Note that ¢'9)' # 1 at B by (2.22). Thus it follows by (2.20) that
2°Q g = (cos 82, + sin6,)| 5

:<cos0w’sine)(w’wsgsi“e)(B)< i (B)—Q(B)>

Q.(B) = (B), Qy(B) =

1=’y’ @’ cos O—sin O cos é—w/ sin
(2.23) N .
{4 (B) — sina(B)Q’(B)>

<<p’ cos O—sin O

& 9% _
' cosé—siné(B) o \/W(B)> =0.

(cos 0—1)’ sin 0) (' cos —sin 0)
20 cesint)

(cos —1)’ sin 0) (' cos —sin 0)
1=p'y’ <B)
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In addition, from (2.23) and (2.8), we have 9~ Q = —9+Q at B, which together with
the fact cosw(B) = 0 reduces the last equation of (2.10) to 976 = 0 at B by the fact.
Applying (2.20) again gives §'(B) = 0, which implies that 70 = 0 at B. Hence

F0(B) = cos(0(B) — w(B)0e(B) + sin(0(B) — w(B),(B)
= siné(B)0,(B) — cos§(B)6,(B)
~[cos(0(B) + w(B))02(B) + sin(6(B) +w(B))b,(B)] = —976(B) = 0,
which means that the last equation of (2.10) holds at point B.

We now investigate the boundary data of (H,U,V). It is easy to see by (2.11)
and (2.21) that

o+Q 4 o
(2.24) Hl|gz = Glo) _ = GO VIT e (§(cos@)) = ho(cos@).

On the boundary EZ', we know that
Qe +¢'Qy = Q. cosO, + sin 0Q, =0
from which one obtains

Q55 = (cos Ay + sinafdy)| 55 = —sinf - (9 Nse + cos @ - ()lzs

Yol /
_ —siné( sin ) ) +c0sé< cos 6 )

cos Ggo — siné cos 94,0 — siné
Q/
cos égp’ —sinf’
which combined with (2.11) leads to
Q/

50 G(1)(cosOg/ — sind) (z) = ho().

7o
G(w)

(2.25) Hige =

For the data of U on BA, we use (2.15) and (2.21) to achieve

Ulgy = <5+w _ HG(w))

2w (K + w?) i
(2.26) ! ( = Q) (7(cos @)) = bo(cos @)
. = — w = w).
L+ ()2 \28(r +5?) / !
Furthermore, it follows from (2.8) that 0T=Z+0~Z = 2 cos wd’Z, which indicates that
O0T= = —0~ = on the sonic curve BC. We add the two equations in (2.14) to observe

L 0te+00 9%

sin(2w)  sinw’

ItE—0 E=
which implies that

L 09 - 00
(2.27) U|§?j:a+:|BC=—72 5 V|§5=8 :|§5 5
BC
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Thanks to the fact 078 — 0~ 6 = 0 on the sonic curve, one can find that

é/
Il5e = cosf + @' sinf’
which together with (2.27) gives
90 0 .
(2.28) U|§5:—V|§5:—7|§5:— - — =: —Go(x).

2(cos O + ¢’ sin 0)

We next discuss the data 9°= on the boundary BC for later use. In view of (2.13)
and the first equation of (2.10), one has

0= — 20 o
(2.29) El5e = 50y @l

Adding the last two equations of (2.12) suggests

Otw -0 w

50
70+ 2(k + w?)

=2wG(w)H

which combined with (2.7) gets

/{—i—wz

[2wG(w)H — §°9),

— sinfw, + cosw, =
from which one has
—sinf - (@)lge + cos 0 - (@y)lge = 2(k + D[G(1)ho — ao],
which along with the fact w(x, p(z)) = 1 yields

2k 4 DICWhy — agly 2k DG (ko — ]
(@)l5 x D (@)l5e

cosf + ¢’ sin 6 cos@+<p sinf

Inserting the above into (2.29), we acquire

0 sinf — ¢’ cos - R N
(2.30) 0S| 55 = L B0G(1)h — o) (x) = i ().
cosf + ¢/ sinf

According to the derivation process and (2.20), we know that ho(0) = ho(zB)
and bo(0) = —ag(zp). Moreover, it is easily confirmed by the smoothness conditions
(2.18)=(2.19) that if ¢ "cosf —sinf # 0 and cosf 4+ ¢'sinf # 0, then the functions
ho,ho,ao,al are C2-continuous and the function by is C3-continuous. In addition,
we recall (2.22) to see that (¢ cosf — sinf)(zp) > 0, (cosf + ¢ sinf)(zp) > 0,
ho(zg) > 0, do(xp) < 0, and @;(zp) < 0. Furthermore, we use (2.19) and (2.20)
again to arrive at

1 m ~y " — ’
(2.31) < 1+(ﬁ)2—n+(@)2>w— T W) — 2wV 1 — &2V,

which along with (2.22) gives @'(zp) > 0. Thus we obtain by continuity that there
exist two small constants ¢g > 0 and dp > 0 such that (¢’ cosf — sinf)(x) > eo,
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(cosé+<p sin0)(x) > eg, ho(z) > €0, do(x) < —eo, a1 () < —ep for any z € [rp, x5+
S0, @' (y) > eo for any y € [y — do,ys], and ho(cos@) > &g, bo(cos@) > &y for any
cos@ € [0,dp]. Since we only consider the existence of solutions around point B, we
may assume, without loss of generality,

(o, 60, 1)(2) € C (23, 20)),

ho(cos @) € C2([0,cos@(A))), bo(cos@) € C3([0,cos@(A))),

0'(x) < —eo, do(x) < —eo, ho(z) > e0, a1(z) < —eo V € [xp,20),
@'(y) = 0 V' y € (ya,ysl.

(2.32)

Otherwise, we can use the points C; and A; instead of C' and A, respectively, such
that the above hold on BC; and BA;.

3. Solutions in a partial hodograph plane. In this section, we introduce a
partial hodograph transformation to transform system (2.17) into a new system with
explicitly singularity-regularity structures, and then apply the iteration method to
solve the new system in an angular region corresponding to the region ABC near
point B.

3.1. The problem in a partial hodograph plane. This subsection is devoted
to reformulating the problem in terms of a partial hodograph coordinate system. For
this end, we introduce the transformation

(3.1) t=cosw(z,y), r=~0(z,y).
By using (2.14) and (2.15), we calculate the Jacobian of the transformation (3.1)

a(t,r)

32) J:= 32 3]

=sinw(0Twd E+ 9 wdTE) = ?[2UV + G H(V - U)],

where
K41

(383)  F=F)=(01-)k+1-), Gi=GCi(t)= (i]t_t) -

Recalling the conditions in (2.32) yields J # 0 away from the boundary curve BAU
BC. )

In terms of the coordinates (¢,7), the operators 9*(i = +,0) can be transformed
into

ot = —2F(U+ G1H)0, — 2v/1 — 12Ut0,,

(3.4) 9~ =—25(V — G H)9, + 2V1 — 2Vt,,
= (U+V)8t+\/1—t2(V—U)8T.

Therefore, we can obtain from (2.17) a new closed system for the variables (H,U, V)
under the coordinates (t,7) as follows:

(3.5)
— 2 _ 2
Hy + PSS H, = 0
VI—#2Vt? _ (s V)U+(+1-t>)G1H U4V | (k+2-2t")U+(s+1-t*)G1 H
Ui — F(V tGJ{)U - 2F(vfi GIH) + + = F(V— ng) Vi,

Vi, + V1=t2Ut? V. = (k+D)V —(k+1-t*)G1 H U+v + (k+2—2t3)V —(k+1—t )GlHUt

F(U+G1H) B 2F(U+G1H) F(U+G.H)
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Once we obtain the solution (H,U,V)(t,r) of (3.5), we can use them to construct the
functions = z(t,r) and y = y(t,r) and then establish the functions (0, w)(z,y) by
3.1

( )VVe now derive the boundary data for system (3.5) on the (¢,r) coordinates. It
suggests by the assumption ¢’ < 0 on BC that the smooth function r = 9( ) is strictly
decreasing, from which we know that there exists an inverse function, denoted by
x=z(r) (r € (r1,re]), where 11 = 0(z¢) and ro = 0(xp). In addition, it is easily seen
that the sonic boundary BC on the (z,y)-plane is transformed to a segment B'C" on
t =0 with 7 € (r1,72] on the (¢,7)-plane. Denote ho(r) = ho(i(r)), ao(r) = ao(2(r)),
and a;(r) = a1(Z(r)). On the segment B’'C", we have

(3.6) (H,U,V)(0,7) = (ho, —ao,a0)(r) ¥ 7 € (r1,79)].

Furthermore, if (H,U, V) is a smooth solution of (3.5), then there must be
U+V U+V

3.7 Hili—0 =0, Utlimo = o=

(3.7) tlt=0 » Utli=o 2t |, tlt=0 2 |,

In view of the definitions of (U, V), we observe that the quantity (U +V)/(2t) on the
(t,r)-plane corresponds to the term 9°= on the (z,y)-plane. From (2.30) and (3.7),
we thus have

(3.8) H:(0,7) =0, U 0,7)=a1(r), Vi(0,r)=a1(r) Vre(r,re.

For the boundary BA, we recall the assumption &’ (y) > eo on (yA7 yp] in (2.32)

to obtain by (2.19) that 8’ < 0 on BA \ {B}, which means that r = 6(y) is a strlctly
decreasing function on (y4,yp]. Hence there exists an inverse function y = y ) on

r € [ra,73), where 73 = 0(y4). We denote the curve {(t,7)| t = \/1 — @2(3(r))} by
B'A":r =7#(t) (r € [r2,73)). Then we have the following proposition.

PROPOSITION 1. The curve B'A’ is the image of the curve BA on the (t,r)-plane
and is a positive characteristic of system (3.5). Moreover, the function r = 7(t) can
be expressed as

o i V1 — 52by(s)s?
(3.9) () =72+ /0 ) oty & €0
where tg = /1 — w2 (y4).

Proof. Tt suffices to show that the image of BA on the (t,r)-plane and the curve
B'A" both are positive characteristic curves of system (3.5) passing point (0,72).
Differentiating the equality x(¢,7) = ¥(y(t, r)) with respect to t and applying the fact
' = cot(f + w) gains

dr  cot(d +w)yr — m¢

dt  x, —cot(6 +w)y,’
which together with (3.1) and (2.14)—(2.15) acquires

dr  cot(f +w)b, + 6y
dt  sinw(wy, + cot( + w)w,)
9t 2 ,0t= 1—¢2
(3.10) _ 0 o _ cos® wd Y U .2

sinwdtw  sinw(k +sinw)(I+E+ G H)  F(t)(U +G1H)
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which indicates that the image of BA on the (t,r)-plane is a positive characteristic
of system (3.5). Furthermore, it is easy to see that x(0,r3) = xp and y(0,r2) = yps.
Thus the curve defined by (3.10) passes through point (0, rs).
For the curve g\A’, we differentiate the equality t = /1 — 2 (g(r)) with respect
to ¢ to suggest
& TG0
dt ta

which along with (2.20) and (2.26) leads to

(v),

di  2(1 —&2(§(r))) @' 2
i = <2—fv(n+fv2)ﬂ)
22 . vl 2t250 . mgo 2
B11) = b1+ () = 2% (r + @2)(bo + Giho)  F(1)(bo + Glﬁo)t

from which we find that B’ A’ is a positive characteristic of system (3.5). It is obvious
that 7(0) = ro. The expression (3.9) follows directly from (3.11) and the proof of the
proposition is complete. 0

Let function 5¢(¢) be the solution of the following ODE problem:

dio(t) _ _ (k+D)so—(rt1—t))Giho | bo+60 (542220050 (54 1) oy
(3 1 ) _ dt 2F (bo+G1ho) F(bo+G1ho)
50(0) = ao(r2).

The solvability of problem (3.12) will be shown in Lemma 3.1 in subsection 3.2.1.
Therefore, on the curve B’ A’, we have

(3.13) (H,U,V)(t,7(t)) = (ho,bo,50)(t) ¥V tel0,to).

Summing up (3.6), (3.13), and (3.8), we finally arrive at the mixed-type boundary
data of system (3.5) as follows:

) a
(H,U,V)(0,7) = (ho, —o, ao)(
(Ht’Uta‘/t)( ) (0 alaal)(r

);

(3.14) ; Vore (ri,ral,
t

(H, U7V>( s ( )) <h07b0,50) ) Vte [O,to).

(
According to the above derivation process and (2.32), we know that the functions
ho, ho, ao, a1, and bo satisfy

(ho, G0, a1) € C%((r1,72]), ho € C*([0,t0)), bo € C3([0, ),

ho(0) = ho(ra), hj(0) =0, bo(0) = —ao(r2), by(0) = a1 (ra).

We comment that the conditions in the last line of (3.15) are the basic compatibil-
ity conditions at the point B’(0,73), which follow from the definitions of functions
(ﬁo,ﬁo,&o,&l,i)o) and the compatibility conditions (2.20). Hence, the problem in
terms of (¢,7) coordinates can be restated

(3.15) ho > €0, G0 < —eo, a1 < —&0,

PROBLEM 2. Under the assumption (3.15), we seek a local classical solution for
system (3.5) with mized-type boundary conditions (3.14) in the region t > 0 near the
point B'(0,r3).
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To solve Problem 2, we need some information of H, and U, on the boundary

~B/’\A’. According to the equation of H in (3.5) and the boundary value H(t,7(t)) =
ho(t), one obtains

V1= 12(by — 50)t2

Hy(t,7(t)) +

F(bo + 30)
(3.16) ~
_ V1 — t2byt? o5
Hy(t,7(t)) + er(tﬂ"(t)) = hy(t),
from which we get
(3.17)  H,(t,7(t)) = . F@O th) Ja(0) = Gi(t).

tv1— tQ[(go — bo)(bo + Glho) + bo(bo + 50)] t

A similar argument for U achieves

F(lN)o + Glilo)(go - Glﬁo) B/O(t) —g(t)

3.18 U, (t,7(t)) = : ~ ). — Gy(D),
( ) ( ( )) m[2b0§0 + G1h0(§0 _ bo)] 2 92( )
where
9(t)
(/i + 1)?)0 + (I‘i +1-— t2)G1];,0 [30 + Sp i (li +2— 2t2)b0 + (H +1- tQ)Glho ot
= — ~ = . 0 .
2F(SO — Glho) t (50 - G11h0)

Actually, ¢(t) is the value of the right-hand term of the equation for U in (3.5) at
boundary B’ A’. Now we further assume that the functions ho () and by (t) satisfy some
appropriate conditions such that the following compatibility conditions (C) hold:

C1) ¢ §1(0) = hpy(r2) 92(0) = —ag(r2),
3.19 ). § @) g 0{r2), o
(319 @ { ) 3(0) = (o).

Remark 1. The conditions (C) are the compatibility conditions of H, and U, along

the characteristic boundary B'A" and the line t = 0 at the point B’. More precisely,
the condition (C;) ensures that H, and U, are continuous at corner B’, which is
reasonable when considering the existence of classical solutions. The condition (C2)
comes from the continuity of the derivative of U, with respect to ¢, which plays a key
role in dealing with the singularities in the current paper and can be properly relaxed;
see Remark 2 in subsection 3.2.3.

Therefore, we have the the following existence theorem.

THEOREM 3.1. Suppose that (3.15) and (3.19) hold. The mized-type boundary
value problem (3.5), (3.14) admits a unique classical solution around point B'(0,73).

3.2. The proof of Theorem 3.1. This subsection serves to solve the mixed-
type boundary value problem (3.5), (3.14). The proof is divided into four steps.
First, we introduce new variables to homogenize the boundary conditions and then
give the definition of admissible functions. Second, we derive the integral equations
and then construct an iterative sequence. Third, we establish several key lemmas for
the iterative sequence. Finally, we complete the proof of Theorem 3.1.
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3.2.1. The homogeneous problem. For convenience, we introduce z = ry —r.
Then problem (3.5), (3.14) can be rewritten as

(3.20)
5 VIO +V)EP 5
Hy FU-V) H. =0, ]
77 V1I—£2Vt? 77 (n+1)U+(n+1 t*YGiH TU-V (k4+2=2t U+ (k+1-t>)G1 HT7
Ut+F(V+G1*) z 2F(V+G1H) ot F(V+G1H) Vi,
V. V11202 Vv, = (kAD)VH(s+1-t*)G1H V- U+ (k+2—2t2)V4(k+1— tQ)GlHUt

t FO+GH) * 2F(U+G, H) t F(U+G.H)
with

H ),
(3.21) (Etilvt)(O,z) =(0,—aj,a1)(z) Vz€e[0,re—r),
H, U,V (t,g(t)) = (ho,bo,—go) t) Vite [O,to),

where (H,U,V)(t,z) = (H, U,V )(t,r2 — 2), (ho, ag,a1)(z) = (hg, —ao, —a1)(ra — 2),
and g(t) =79 — f(t)

We further introduce the following variables (W, R, S) to homogenize the bound-
ary conditions (3.21):
(3.22) W =H—ho(z), R=U —ap(2) + a1(2)t, S =V —ap(z) — a1(2)t.
Combining with (3.21) and (3.22) gives

(WRSWt,Rt,St)( ):0 VZE[O,’/‘Q—’/‘l),

(3:23) (W, R, S)(t, 2(t)) = (h,b,5)(t) ¥t € [0, o),

where

We recall (3.15) to get

(ho, ao, a1)(z) € C*([0,r2 — 1)), h(t) € C*([0,t0)), b(t) € C*([0,t0)),
(3.24) ho > g, ag >e€g, ai > €,

h(0) = B'(0) = b(0) = b/ (0) = 0.
In addition, one uses (3.17)—(3.18) and (3.22) to acquire

W.(t,2(t) = —g1(t) — hy(2(t)) :=
(3.25) Rz<t, g(t)) = —go(t) — a()( (t)) +a

which together with the compatibility conditions (3.19), the regularity conditions in
(3.15), and the facts hj = —h{, aj = ag, aj = @} arrive at

(3.26) (0] < Kt, |ga(t)] < Kt?
for some positive constant K.

By performing direct but tedious and lengthy calculations and doing some ar-
rangements, we can obtain the system in terms of (W, R, S),
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V1—12(R+ S+ 2a9)t?
F[2ait — (R — )]

_ 12 2 _ _ 2
VI_Z(Stagtat)? RS (R-S)

W + W, = Clt,

Ry +

3.97 F(S+GiW +¥) 2t t
(3.27) +AsR + A3S 4+ AW + Ast? + Agt,
A1 — 12 _ 2 _ o 2
St _ 1 t (R+ Qg alt)t SZ _ S R + B1 (R S)
F(R+GiW + @) 2t t

+BsR + B3S + BytW + Bst? + Bgt,
where U = ag(2) + a1(2)t + G1(t)ho(2), ® = ag(z) — a1(2)t + G1(t)ho(2),

V1I—t3(R+ S +2ap) ,, k+1
Cy=-— hot, Ay = ,
F[2a1t — (R — 9)] 2F (5 +GiW + )
A — A+ Dar £ GL(W o)t | (k+2 1)t (k42— 2t)(S + ag + art)t
°T 2F (S + GiW + U) 2F F(S+G W +0)
Ao — 2(k+1)ay N (k+2=3%)t  t(1—2t*)G1(W + ho)
ST F(S+GW 4+ 0) oF 2F(S+GW + )
t(k+2—2t2)(S +ag +ait)  t(Gihoao — 2(k + 1)a?)
a F(S+GW+0) FU(S+G W +0)
. Giag n G2hoao — 2(k + 1)a3 Gy
YT FSHGWHY) | FU(SHGW )
K+2—2t2 (1 —t)G1(W + hg)ay ;o V1T —12(S 4+ ag + art)
b= u g aw w9 T e+ )
1 1
_2a1(ﬁ:—|—2—t2_ G1(W + ho) (n+2—2t2)(5+ao+a1t)>
2F 2F(S + G W + ) F(S+G W +0)
2apt G1(W + ho)t a1[2(k + 1)a? — G1hoao)
F F(S+GW+U)  FU(ap + Gih)
B, — k+1
'T9F(R+ GLW £ )
B, — —2(k+ 1)aq N (k+2=3t%)t  t(1 = 2t*)G1(W + ho)
T F(R+G W +9) 2F 2F(R+ GW + @)
t(k+2—2t2)(R+ap —ait) = t(Gihoao — 2(k + 1)a?)
a F(R+G\W 4+ ®) FO(R+G W +d)
B. — 4(k+ Dag —tG1(W +ho)  (k+2—t2)t N t(k+2 —2t2)(R + ap — ait)
5T T 2F(R+GLW + @) 2F F(R+G\W + ®) ’
B = Giag G?hoao — 2(k + 1)a2G,
F(R+GW + @) FO(R+GW +®) ~’
k42— 2t2 (1 —t2)G1(W + ho) ., V1 —=12(R+ag — ast)
b=t Fmrawre @ 0t ) Tmn G )
_’_2&1(5—&—2—752_ G1(W + ho) (f<;+2—2t2)(R+a0—a1t)>
2F 2F(R+ G1W + @) F(R+GW + @)
~ 2a0t n G1(W + ho)t a1[2(k + 1)a? — Gyhoag)
F F(R+G1W+q)) F(P(CL0+G1}L0)
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and

K+ 2 2(k + 1)a? — G1hoag
( ) 6 6 o F(ao + G1h0)

F

The three eigenvalues of system (3.27) are

N V1—1t2(R+ S+ 2ap)t? N = V1 —12(5 + ap + art)t?
O T FRat—(R-95)] T FS+GW+U)
(3.29) \ o V1I-B(Rta—at)t?

F(R+GW+®) ~’
and the three characteristics passing through point (£,7) are defined by

(3.30)

{dzi(t'fn) Ailt,z, W R, S)(t, zi(:€:m)), 5 _ o 4.

zi(&€,m)

In order to construct the integral equations later, we first show the solvability of
the ODE problem (3.12), which is equivalent to the solvability of the following ODE
problem:

ds(t) s—b =~ (s—b)?
= B
(3.31) dt 5 T
s(0) = $'(0) =0,

+ Bob + Bss + Byth + Bst® + Bt,

where B; (i =1,...,6) are the functions B; (i = 1,...,6) but with h, b, and 2(t)
replacing W, R, and z, respectively. Actually, s(¢) is the boundary value of S on the
curve z = Z(t). For the ODE problem (3.31), we have the following:

LEMMA 3.1. Let (3.24) be satisfied. Then there exists a positive constant §1 < tg
such that the ODE problem (3.31) has a unique C%-solution on t € [0, d1].

Proof. Throughout the paper, we use ko and K to denote two positive constants
depending only on the C2 norms of ho, a, @1, ko, the C3 norm of by, and the constants
K, €9, which may change from line to line.

Due to the last line in (3.24), we first have

(3.32) |h(t)] < Kot?, |W (1) < Kot, |b(t)] < Kot?, V()| < Kot,
from which we can choose ¢; small enough such that
ko < F(t) < Ko, ko < Gi(t) < Ko,
(3.33)  b(t) + G1h(t) + D > ag + G1ho — (Jar|t + |b(t)] + G1|h(t)])
>0 — (Kod1 + Kody + Ko - Kob3) > ¢ V€ [0,61].
Let
(3.34) My = max{Kj,, max |B | (i=1,...,6)}.

tGO 1

We denote 5(9 () = 0 and then define quantities s*)(¢) (k > 1) by the relation

t (k—1) _ . (k=1) _ p)2 . ~
s(k)(t) = / {82 b + B (s b) + Bob + 335(1971)
0

2T T 2

(3.35) + Byth + Bsm2 + EGT} dr.
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By the standard argument of induction, we can prove that for all k£ > 1

k

k J
) 2
B0y (3) . 00D <amne(F) veensl
=0

for the positive constant 6, = min{d;,1/(4M;)}, from which we know that the se-
quence s(k)(t) converges uniformly, and the limit function, denoted by s(t), is con-
tinuous and satisfies |s(t)| < 3M;t? for any t € [0,01]. The boundary conditions
in (3.31) and the smoothness of s(t) can be checked from (3.35). The lemma is
proved. 0

Next we define the domain and the admissible functions. Set

Ds, = {06, 20 <= < 25"
which is a closed domain in the (¢, z)-plane. Let S(Ds,) be a function class incorpo-
rating all vector functions F = (f1, fo, f3)7 : Ds, — R® that satisfy the following
properties:

(=

1): fi (i=1,2,3) are continuous on Dy, ;

(P1) :
(P2) : (f1, f2, f3)"(0,2) = (0,0,0) V z € [0, 25"];
(P3) :
(Py) :

(336) Ps3 (f17f27f3)T(t72(t)) = (ha b’s)T(t) Vie [0751];

Py): max |fit,2)] < Mt? (i = 1,2,3),
(t,Z)€D51

where M (> 3M,) is a fixed constant. o
We note by Lemma 3.1 that the vector function (h,b,s)” belongs to S(Ds,),
which means that S(Dy, ) is not empty. For any (f1, f2, f3)T € S(Ds, ), by (3.24) and

the property (Py4) in (3.36), we can choose d; < min{d;,1/M} small enough such that
for all (¢,2) € Ds, N {t < 2}

(3.37) 2a1t — (f2 — f3) > eot, f3+G1f1+‘1’2%07 f2+G1f1+‘I)Z%O,
and
k<\/1_t2(f2+f3+2ao)t<f k<\/1—t2(f3+ao+a1t)<F
TT FRat—(f2—f3)] T T T F(fs+GiAi+Y) T
338) <Y Plta-al) &
' T F(fo+Gii+®) T
and
(3.39) E>2K6,, 20> 5(6,) + K63 =2

for some positive constants k& and K. We claim that the number z; is positive. Indeed,
one recalls (3.9) and the expression Z(t) = ro — 7(t) and then uses the transformation
(3.22) to obtain

5(62) = VI Phtt [ VT Phta-wl?
2 o F(bo+ Giho) o Fb+Gih+ao—ait+Gihg]
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which combined with the property (P3) in (3.36) and (3.38) yields

d2 . F
2(8) > — Kt? dt = ——63,
0 3
from which we observe that z; > 2K63/3 > 0. Denote 2(t) = z; — Kt3. Then for any
t € [0, 2], one has z(t) > Z(t) and z(t) = Z(t) iff ¢ = 5. Moreover, it is easy to see by
(3.29) and (3.38) that, for any F € S(Dy, ),

(3.40) M(F) = A_(F) > kt, A (F) = A_(F) > kt*.
Let Ds, be a closed domain defined by
(3.41) Ds, ={(t,2)| t € [0,62], 2(t) < 2z < 2(1)}

and S(Ds,) be the corresponding function class of S(D;), but with D;, replacing
Ds,. We point out that the domain Dy, is a strong determinate domain for system
(3.27), that is, for any vector function F = (fi, f2, f3)7 € S(Ds,) and for any point
(€,m) € Ds,, the characteristic curves z;(t;€,m) (i = 0,+) stay inside Dgs, until the
intersection with the boundary curves z = 2(t) or t = 0. Here z;(¢t;£,n) (i = 0,+) are
defined in (3.30) but with (f1, f2, f3)7 replacing (W, R, S)T in \; (i = 0,4). We use
& (i = 0,+) to denote the intersection times of curves z = z;(t;&,n) (i = 0,+) and
the boundary of Dj,. We claim that

(3.42) 20(t;€,m) < 24(:€,m)
holds for t € [&,&). In fact, from (3.30), one has
. VI B(fs a0+ art)
Z+(t7€777) = /t F(f3 +Glf1 + \I/) t dta
. o VI —12(fo + f3 + 2a0)t
Zo(@fﬂ?) = /t F[?alt . (f2 _ fB)} t dt’

which together with (3.38) and (3.39) gains

Z+(t;£777)720(t;£777)
_/EV1—t2(f2+f3+2ao)ttdt_/£Vl—t2(f3+ao+a1t)
¢ FRat—(fa = f3)] ¢ Flfs+Gifi+79)
3 & K
ktdt — [ Kt*d o)z - =
Z/t*t t /t t2dt > (& t)[2 3(§+t)}

2 42 b7 2 42
S LA R

t2 dt

> K6y >0,

which leads to (3.42). Furthermore, it follows by employing (3.38) again that for
le [5-‘1—; é.]

& 9__
(3.43) e (tEm) — 2 (66, m)| < /0 IR dt = SRE"

Combining with (3.43) and (3.28) yields

(3.44) |As(t, 21 (t:€,m)) — Be(t, 2 (t:€,m))| < Ko|zp(t:6,m) — 2-(t:&,n)| < Ko&™.
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3.2.2. The integral equations and iterative sequence. We proceed to con-
struct the integral equations, based on the differential equations (3.27). For any

(¢,m) € Ds,, we integrate the system (3.27) along the characteristic curves z = 2;(t)
defined in (3.30) and use (3.23) to obtain a system of integral equations

£
PW&m:h@ﬁ+/CM@%@D&,

R-S R— 8)?
{ +A1( ; ) + AR

£
R@mzmg+/

&+ 2t
(3.45) + A58 + AW + Ast? + Aﬁt} (t, 2z, (1)) dt,
‘(S—R R—S)?
5(5777):/ { o7 +Bl( ; ) + B2 R
0

+B3S + BytW + Bst? + BGt}(t, z_(t)) dt,

where &; (i = 0,+) are the intersection times of curves z = z;(¢;€,m) (i = 0,+) and
the boundary of Ds,. Here we used the fact that the negative characteristic curve
z = 2_(t) = 2_(t;£,m) only intersects the line ¢ = 0. We note that \; (i = 0,+£)
depend on the solution (W, R, S); then the characteristic curves z = z;(t) (i = 0, %)
and also the numbers &, &, may change in each iteration step, which makes the
construction of iterative sequence more complicated and the proof of the convergence
of the iterative sequence rather more difficult.

We now construct an iterative sequence for the integral system (3.45). Set
WO (¢, 2) = h(t), RO(t, z) = b(t), and SO (t,z) = s(t). Let z = 2(t) (i = 0,+) be
the curves in D, defined by

dz” (¢)
dt
90 =0,

= Ni(t, 2, WO RO 5@yt 50 1), o

where \; (i = 0,+) are given in (3.29). It is easily seen by (3.39) that 259)@) < 2(()0) (t)

for t > 0. Then Dy, is divided into three disjoint subdomains,
B, = D U D U D),

where DYV = {(t.2)] = > (1)} N Ds,, DL = {(t.2)] 20(t) < = < 27 (1)}
Ds,, and D((;LZB) = {(t,2)] z < 25:))(15)} N Ds,. For any (&,n) € Ds,, we define the

characteristic curves z = 2" (t) =: zi(o) (t;¢,m) (i=0,%) as

Az (t;¢,m)
dt
20¢¢,m) =,

Thus, if (§,n) € Dggl), then z = zi(o)(t; &,m) (i =0,%) intersect t = 0; if (&, 7) € D((SSQ),
then z = zfo)(t; &,n) (i = £) intersect ¢t = 0 while z = z(()o) (t;€,m) intersects z = Z(t);
if (&,m) € D<(523)’ then z = z(_o)(t;f,n) intersects ¢ = 0 while z = zi(o)(t;f, n) (i=0,+)

= (2, WO RO SO 0 ().
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intersect z = Z(t). According to the above three cases, for any (£,7) € Ds,, we
construct the functions (WM, RM S (& n) as follows:

(3.46)
3

WO =)+ [ eV @) d,
&’

& (RO _ g(0) ) (RO — 5(0))2
2t 4 t

M%mzw%+é

+AP RO + AP SO + AP W © 1 4L 4 Aéo)t} (t, 247 ()) at,

£ (50 _ RO RO _ g0))2
SM(e, ) :/0 { y JrB§o)( : ) + B RO

(0)
¥

+BV50 1+ B4 © 4 2 4 Béo)t} (t,20 (1)) dt,

where 51-(0) (1 = 0,+) are the 1ntersect10n times of curves z = z (t &n) (1 =0,4)
and the boundary of Dj, satisfying fo =0ifn>2 A(O) (t), (()0) >0ifnp < Z(()O)( t)
and 5 O = o if n > éf)( t), E_(f) > 0ifn < A(O)(t). The functions C’{O), AZ(-O), and
fo) (¢ =1,...,6) in (3.46) are functions Cy, A;, and B; (i =1,...,6) given in (3.45)
but with W(O) R(O) and S replacing W, R, and S, respectively. We note by (3.42)
that zéo)( t) < zg_o)( t) for t € [5(0) ).
After defining the functions (W®) R®) S(k)) (¢ 2) (k > 1), we can define the
characteristic curves z = éi(k) (t) (¢ = 0,4) passing through (0,0) and z = zi(k) (t) =:
zgk) (t;€,m) (i = 0,+£) passing through (£,7) € Ds, as

= i(t, 2, W® BB g®)) i 58 (1)),

dt
29(0) =0,

i=0,+,

and

(k)
dz " (t&m) _ ®) pk) gy (s LK) (.
(3.47) g = Nl s WL RSN 27 (5 € m),

&€, =,

The domain Dj, now is divided into three disjoint subdomains,

i=0,%+.

Ds, = DIV U D) U DY),

where D"V = {(t,2)] z > 57 ()} N Ds,, DS = {(t,2)| 2 (1) < = < 27 (1)} N Ds,,
and D(k3) ={(t,2)| = < éik)( t)} N Ds,. As in the previous analysis, for any (£,7) €

Ds,, the curve z = P (t &, m) always intersects ¢ = 0. Moreover, if (£,7) € D(kl)
then both curves z = z (t &,n)(i = 0,4) intersect t = 05 if (§,n) € Dg’f), then the
curve z = z(+ (t; &, m) intersects t = 0 and the curve z = z(() (t; &, n) intersects z = Z(¢);
it (¢,m) € D(k3) then both curves z = z( )(t &,m)(i =0,4) intersect z = Z(t). We use

ffk) (i = 0,+) to represent the intersection times of curves z = z( )(t &n) (1=0,+)
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and the boundary of Ds,. Then the numbers §i(k) (i = 0,4+) satisfy ﬁék) = 0 if
n> 2P, &) > 0if g < P @) and ¢ = 0if > 2P (1), ¢ > 00t < 2P ().
Thus we define the quantities (W(*+1D RE+D gk+1)) (2 2) by the relations

(3.48)

3
WD (¢, m) = h(g”) + / o, Ot 27 (#)) dt,
&

RO=D(¢, ) = b(e®) + /

e® 1 t

& Rk _ glk) L A® (R®) — §(k))2
2t
+AP RE) 4 AP g L ARy ) AWz 4 A }( t,28 1)) dat,

¢ ( gk _ pk) R _ g(k))2
SO+ () :/ { - +B§k)( t ) + M R®)
0

+BM s 4 BF k) 4 B2 4 Bé’“)t} t, 2 (1)) dt,

where C;k), Agk), and Bl-(k) (i =1,...,6) are functions C1, A;, and B; (i =1,...,6)
given in (3.45) but with W), R(k) and S®) replacing W, R, and S, respectlvely

We shall show that the sequences (W®*), R*%) §(*)) converge uniformly in a do-
main Ds C D, for some small § < &5.

3.2.3. Several key lemmas. In view of the expressions of Cy, A;, and B; (i =
1,...,6) given in (3.27), if (W, R, S)" € S(Ds,), then by (3.36) and (3.37) there exists
a positive constant M such that for all (¢,z) € Ds,

(3.49)
|Cl(t7ZaR7 S)' SE7 ‘Ai(t,Z,S, W)| < @ ‘Bi(t,Z,R, W)| S@
|C1: |5 t|Crg|i t|Cis| < M, |Aizl; |Ais|; [Aiw| < M, |Bi|;|Birl; |Biw| < M.
We now choose M and § satisfying
~ 1 k
. = < - =
(3.50) M = max{1,4M;,4K¢, 4K, M}, < {52, 1000 QM}’
such that there hold
1 2 Ms 2
(3.51) (2 + 13M5) exp(2M6?) < 3’ 4M0o + = < 3"

Here the constants My, IA(, and k, K are, respectively, are given in (3.34), (3.26), and
(3.38). We denote

Ds ={(t,2)] 0<t <4, 2(t) <z < 2(8) + K& — Kt3}.
It is clear that Ds C Ds,. Then we have the following.
LEMMA 3.2. For all k > 1 the inequalities

k i
WO s [ROE )] SO (€ n)] SMsZZ@ ,
(3.52) . 7=

J
R n) - 5V (en)| < e (3)

j=0

hold in Dy.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/23/21 to 49.52.96.107. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SONIC-SUPERSONIC SOLUTIONS FOR THE EULER EQUATIONS 1601

Proof. We use the standard argument of induction to prove the lemma. First we
show that all inequalities in (3.52) hold for n = 1. Second, we assume that they are
all true for n = k and then establish each inequality for n = k + 1.

Since (W), RO SONT = (h,b,5)T € S(Ds,), then by (3.49) and (3.50) one has

3.53) |0 2)];1A0 1, 2) ;| BO(t,2)) < M (i =1,...,6) ¥ (t,2) € Ds,.
From (3.32) and (3.53), we derive by (3.46)

13
WO | < el + [, #1047 o

1 j
(3.54) < Ko(e{™)? / Mt dt < 752 52 <Mey (g) .
=0
For the quantity R(M)(&,7), one has by noting M > 4K,
|RM (&, n)|
¢ (RO _ 50 (RO _ 5(0)2
< e+ o, { g S - e
+1AP] 18O+ 1A -t (WO + AP + |A‘0>{t} 20 at
13
< %&M/ {J\;t—i—M-MQt?’—i—SM-Mt2+Mt2+Mt} dt
0
) .
2 262 2 2 !
(3.55) < M¢ {1+ <6+M6+M b) )} <MY (3) .

=0

The above estimate also holds for S™ (¢, 7). We next estimate the term |R™M (&, 1) —
S )| by (3.53),

(3.56) IR, ) — SO(E,n)| < [bED)] + I + I,
where
¢ 0) _ g(0) 0) _ g(0))2
L :/ {2|R 5 |+2M7(R ) +2M - (|RO| + |5©))
59 2t t

oM - [WO| 4 2m2 + AL (1,20 (1)) — B¢, 20 1)) - t} dt,

(0)
R(O) _ S(O) R(O) - S(O) 2

+|BO] -t [Ww®| 4 |BY| -2 + | B ~t}(t,z(0)(t)) dt.
For I, it is observed by (3.45) that

3
I < /(0) {Mt+2M~M2t3 +6M - Mt* + 2Mt* + M3 -t} dt
3

(3.57) <M€( +6+2M5+M262+M§3) 2M( 92,
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Moreover, we use (3.32) and (3.53) again to estimate I,
ff) 1
I < / {ZMt+M~M2t3+3M-Mt2+M-t2+M-t} dt
0
3
(3.58) < ZM(gi(”)2 + MEX(M26% + M5 +6).
Inserting (3.57) and (3.58) into (3.56) and applying (3.32) gets

ME* 4+ ME? (; + 84 2M5 + M?5% + M53)

AN

IR (&,m) — S (g,n)| <

- %M( 2 %M( N2 4 ME2(M?6% + M5 + 6)

. ,
(3.59) < M§2{1 + (25 +3M§ +2M38% + M53)} <My (;)j

=0

We combine (3.54), (3.55), and (3.59) to obtain (3.52) for k = 1.
Assume that (3.52) are valid for n = k. Then one has by the choice of M > 3M

. _
(W® (&) < M) @)J < 3Me* < M2,

Jj=0

and similarly

|R® )] [sP (€, m)| < Me?,

which along with the constructions of (W®) R®*) S§®*)) in (3.48) indicates that
(W RK) SUNT € S(Ds,).

Therefore, we recall (3.49) to find that

(3.60)  |[CF(t,2)]; AP, 2)|;|BP (¢, )| < M (i =1,...,6) ¥ (t,2) € Ds,.

)

Thus for n = k 4 1, one has by (3.48) and (3.60)

13
(W ED ()| < \h(fék))] +/ t- \Cl(k)(t72(gk)(t>)| dt

g

(3.61)

IN

M 2 ¢ 3 2 2k+1 2 7
—& 4+ Mtdt < -Me <M = .
R DY

; 3
7=0

We next derive the estimate of RtV (¢ 7). Employing (3.32) and (3.60) again, it
follows from the induction assumptions that
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|REF (& )|

¢ (|RM) _ gk R _ g(k))2
)+ I T BRSO o

IN

2t t
+ A5+ AP0 O]+ [AD] + [P0 A0 0) a
k

Yo LS (& an(S ()

Jj=0

k j
2
+3M2§ :(3) t2+Mt2+Mt} dt
j=0

(3.62) < M¢? 1+1+5 +(1+M252+M5 Zk: gj <M§21§ gj
o= 42 4 3 - 3)°

=0 =0

The derivation in (3.62) is also valid for S+ (¢ n). For the term |R*+1 (¢ n) —
S+ (€, n)|, we compute by (3.48)

(3.63) |R*+D (&) — SED (e )| < (b1 (EW)] + I + L,
where
3 Rk) _ g(k) (k) _ q(k)\2
13:/ {2H+2M(RS)+2M~|R(k)|+2M~|S(k)|
55rk) 2t t

oM - (W® | 1 ame? 4 AP 1, 20 () - B (¢, 20 (1)) - t} dt,

e 19k — Rk R _ g(k)y2
=[BRS o B e
0
+|BP] 8B+ |BP| -t (W |+ |BO |2 + |Bék)|t}(t,z(_k)(t)) dt.

Using similar arguments as for I; and I3, one deduces by the induction assumptions
2

[ {ms () v (5 2) )+

0 =0

I3

IN

. _
2 J
+6M2t2§ <3) +2Mt2+M§3-t} dt
=0

IN

i _
M2 (5 +6°) + (; +2M2%5° + 2M§> > <§)]

Jj=0

k i
(3.64) - sME2 Yy (3)

Jj=0

and
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(k)

ns [T s (5) aee( (3))

j=0

j
+ 3M>t? Z (;) + Mt? + Mt} dt

3=0
3 Ly 1 (k)2 3¢4 2¢3 NN
(3.65) < ME + SME 4+ ( SMED)? + M+ M) S (S
3=0
We put (3.64) and (3.65) into (3.63) to acquire

|[REFD (&, ) — SEFD (€, )|
< Még? 3 26 + 63 1 3M3262 + 3M$5 ~(2Y
s me{(Graret) « (Grmes vams) 3 (3] ]

(3.66) < Mé? ’i‘j (;)j

=0

Summing up (3.61)—(3.66) completes the proof of the induction step. Hence the lemma
is proved. 0

From Lemma 3.2, we have (W®*) R*) S*NT ¢ S(Ds) for each k > 1. Thus it
suggests that for i =1,...,6

e RO R G O

(3.67) W, 2B )] < M,
o), t|cm! to® | |aB | |AB | | a8 ] 1B BR ;| B < M

for any (t,z) € Ds. We next consider the estimates for (W,gk)7 R%k), Sék))(g, n) in Ds.
Thanks to (3.48) and (3.25), we obtain for k& > 1

(3.68)
Wi e, n)

13 9 (k)
= o)+ [, e+ clfes® + o T 0 o
0

(R — g0 (R — gk)y
t

¢ (g _ gk
(k+1) o (k) z z
LIRCURCORY N {215

+24%
X ) 8z(k)
+ABRF 4 AW g™ L aB B 4R T<k>t} T;(t, 2B (1)) dt,

€5 - M R — k) (RK) — 5
SUFD (e ) :/0 { - JrQBEk)( )t( )JFBY;)SSC)

0
+B R + BHWSH + B<k>+T<k>t}; (t.2® (1)) at,
n

where

k k k k k
(3-69) 051) = CfR)v sz) = Cfs)a 013 = C£z)a
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(3.70)
k k k k
AR = AP, 1® = A = B,

(R*) — §(k))2

AW =A% 4 A% + AJR® 1+ AN s®) 4 AT ® 4 Al

*) (R*) — §(k))2

k k k &
AR — A 4 at) t + AR BB 4 A®) G0 | 40 ) 4 g B

B _ 4 (B® —5®)?
A = a0

+ AP R® 1 AW 50 4 AP ®) 4 A2
(3.71)
k k
B -

(R¥) — §(k))2
t
(R¥) — §(k))2

BY =B + BY%) +BYR® + B s® 4 BRiw®) 4 Bl

BY =B + BY) + B4 R® + B s® 4 B tw®) 4 B 42,

(R*) — §(k))2

B% = B +BWR® 4+ B s® 4 g™ 4 g2,

t
and
(3.72) ( §&n) = exp{ 5, 8 (t:¢,m)) d } i=0,+.
I3 z
Furthermore, we recall the expressions of A; (i = 0,+) in (3.29) to see that
ork)
(3.73) 5 = Ol RY + CPs® + o),
where
o® _ V1-t L VI BB+ 5® 4 2a0)t?
7 Fl2ait — (R® — S®))] T F2a:t — (R*) — Sz
(3.74) o) _ Vi-e ~ VI=2(RW™ 4+ 5 4 2q0)t2
. 15 F[2a:t — (R®) — S())] F[2a1t — (R®) — Sz
o _ 2a(\/1 — 12t  2a5V1T = 2(RWM 4 SW) 4 24083
167 Fl2a1t — (R®) — §(#)))] FRait — (R® — g
&\f) (k) q(k (k) (k)
where
A0 _ V1-— 2t _VI-2(SW tag tant)
B FS® G uW® 0] FISR) 4+ GW R 4 w]2
16 F[S® + Wk w2 "7
Al =V 1—12(ap + alt)t2 VI —12(S® +ag + a1t)V, 2

FIS® + GW® +0] FIS® + G WE + ]2
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and
A L Rk . a®)
(3.77) 0 By R + Big W + By,
where
B _ V1= 121 VI—2(R® +ag —art)
15 F[R®) 4+ GiW®) + @] = FIR® + GyW®) + ]2 7
V1= 12(R® _
(3.78) Bg;é) _ 1-t2(R -‘r(lo a1t)Gq 1,2

F[R®) + GyW k) + @2 7

g V1-t(ap — aﬂf)t2 VI—2(R® + q¢ — at)®:
77 FR® 4 GW® + @] T FR® 4 GWHE ]2

Combining with (3.69)—(3.78) and using (3.67), (3.52), and the regularity condi-
tions in (3.24), we can deduce the estimates

(3.79) e | < M, tjely)| < M,

T < M, TP] < M,

1FO1 <M, 8] < M+ M- (3M)26° + 3M - 3M5? + M6? < 2M,
|F5] < t[M + M - (3M)26% + 3M - 3M§ + MJ]

< Mt(1+9M?52 +10M4) < 2Mt,
|F] < M- (3M)243 + 3M - M2 + Mt® < Mt*(10M + 9M25) < 12M2¢2,

(3.80)

where f = A, B, and

s cB | <M, |cP] < M, [Cf)| < Mmt,
3.81
A | A | AR | B | [ B | BR| < M2,

and

az(k) )

‘827 <exp{/0 [M(|RP| +|SP]) + Mt dt},
(3.82) e

‘ 5 <exp{/ Mt (|[RP |+ [P + W] + 1) dt}

Then we have the following lemma.

LEMMA 3.3. For all k > 1 the inequalities

}Wé’%,n)ISMfi() sl 1S, n>|<M£2ij<§)j,

(3.83) , g=0

RO (€m) - SP(e,m)| < M zkj()]

hold in Dy.
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Proof. We also apply the argument of induction to show the lemma. Due to the

fact W = R = 5 = 0, one has by (3.82)

92 (0)

(3.84) <exp(Mé?), i=0,+,

which along with (3.68), (3.79), (3.80), and (3.26) get

82(()0)

3
W < )]+ [ o] %2 ar
0 n

~ ¢
< Kel” +/ Mtexp(Md?) dt
0

1 J
(3.85) < M§< + Jexp(M§?) ) <MY @)
j=0
and
(0)
RO < o]+ [ (Al + ol |22

< K(E?)? + / (12M2£2 + Mt) exp(M42) dt
0

L .
1 1 !
. cme2d (Pt 2 2 '
(3.86) < M¢ {<4+zexp(M5 )>+4M6exp(M§ } E ( )
Moreover, we have by (3.68)
(3.87) RO Em) = SPEm)| < lga (€8] + Is + I + Ir,
where
& 92
— (0) (0) -
I; = BO| 4 |7O) . at,
A G ) o

) [ s

920 920
O 7%+ (4 O _p@ 2=y O] 4 gy
6977 ( ? Z—f ) 6977 ( . )

£ 920
e i 22

5(0)

&

§
I; = T
-y

For I and I, one uses (3.80) and (3.84) again to obtain

£

(3.88) Is < / (12M2t2 + Mt) exp(M§?) dt < M¢&? ( + 4M§> exp(M§?)
0

and

4
(3.89) Is < / 2. 12M%t? exp(M§?) dt < ME? - 8M§ exp(MS?).
0
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For the term I, we also have by (3.72), (3.79), and (3.82)

f 0 0 az((])

I < / {1T<°><t,z<+><t>>—T<°><t,z<><t>>|- O

0 377
825:)) 8z(,0)

+[TO, 2V t))| -

(0) (0)
S A 0) - T ) |

13
<[00 -0 w] expiare)

NN
M M52 + = 1) dr} dt
M exp( )/O(az a)}

which along with (3.43), (3.75), (3.77), and (3.81) gives

1 3
I; < / {M2§3 exp(M &%) + M exp(M§?) / 2M7? dT} dt
0 0

(3.90) < 2M2 ¢t exp(M6?).
Putting (3.88)—(3.90) into (3.87) and employing (3.26) arrives at

RO m) = 5P (& m)| < K(Ee)? + Me? (; + 4M6) exp(M4?)

+ ME% - 8M 6 exp(M6?) + 2M2&* exp(M5?)

2\7

;-

Combining with (3.85)—(3.86) and (3.91) it follows that (3.83) holds for n = 1.
Now assume that (3.83) are true for n = k. Hence we see that

(WP €m)| < 3Me, [RIPE )| (& m)| < 3ME%,
from which and (3.82) we acquire

‘32(@

(3.91) < M£2{i + (; + 13M6> exp(M52)} < Mg 21: (

Jj=0

[

(3.92) <exp(2Mé&?), i=0,+.

For n = k + 1, we now apply (3.68), (3.79), (3.92), and (3.43) and the induction
assumptions to obtain

(WD (&, )|

826“
0

3 ,
<o)+ [ 1110 el 0]+ e | 22 a

~ 3 koro\?
< K¢l + / 2M-Mt2z<3> + Mt  exp(2M§?) dt
0 3=0

(3.93) < M¢ { <i + 5exp(2M52)> + Ms? Zk: <§)]} < Mglil (g)J

=0 =0
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A similar argument for Rg,k) leads to
RV )]

¢
< |g2(€%)] +/

(k) _ (k)
{|RZSZ|+2M.3M,§. ‘ng) —Sgk)‘

e(® 2t
92\
+ MRS |+ 20 - SOV 4 20t [WIP| + 12047 + Mt ¢ | = dt
n
< 1M£2+/E }Mtzk: 2 j+6M2t MtQXk: 2 :
~ 4 o 127 4&\3 £\ 3
j=0 Jj=0
ko o\
+5M Y <3) +12M%¢% + Mt} exp(2M6?) dt
3=0
2 1 1 2
< M¢ it (5 + 4M6) exp(2M6°)
1 O 2\
2 2
(3.94) + (4 + 4M5) exp(2M6 )Z (3> } < M¢ Z (3) .
7=0 7=0
For the term |R7(7k)(§7 n) — S,(,k) (&,m)|, we proceed by (3.68),
(3.95) | R (e, m) — SEHD(E,0)| < |g2(€)| + Is + Lo + Lo + I,
where
(k) _ gk (k) _ gk)
Ig :/5 |R2Y — 527 +2|A(k)| [RW — SW - R — 87|
0 2t ! t
(k) k ®)| . [k (k) ! i[9
# AL |+ A5+ 9] - (w0 + |} e ar

¢ (1% _ gk R® — g®)|. R _ gk
= [ (LA e | L B0 |59

2t t

92"
+ B[R]+ ] )+ 80| | 2|

e az(k)
I :/ k) ’ t, 28 ’-tdt,
0=/ 7™ 377( ()
13 az(k) az(k)
_ W02 Wy w922 k)|
I /E(p{‘T S 20) - T (2 (t))‘ ¢ dt.

Making use of (3.52), (3.80), and (3.92), we find by the induction assumptions
that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/23/21 to 49.52.96.107. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1610 YANBO HU AND JIANJUN CHEN

1 &2y LAV by (2
Isi Iy < M z 2M - 3Mt - M S) MM z
sz [[g (5) e (5) war e s ()
7=0 7=0 7=0
k 9 Fi k 9 j
2 242 2
+2M - Mt Z(S) +2Mt~MtZ(3> +12M>t }exp(2M5)dt
j=0 7=0
1 b2
(3.96) < M¢? (4 + 4M6> exp(2M6°) > (3) + 4ME® exp(2M6?).
§=0

From (3.79) and (3.92), it is easy to see that

e ) 1 ) 5
(3.97) Iip < ; Mtexp(2M§*) dt < §M( 1) exp(2M67).
For the term Iy;, we have by (3.79), (3.92), and (3.72)
& 9 (k)
(k) (k) (k) (k) 9%+
s [ {IT00) - 19O |2
8Z(k) az(k)
T®E (¢, 28 )] - | == (¢, 28 (1)) — Z==—(t, 2P )| b - dt
+|T™ (2, 21 (1)) 3ﬂ(’z+()) a7’(7Z_())
3
< / {M\zf)(t) — 29 (#)| exp(2M6?)
e®
o

5 a)\(k)
2 —
+Mexp(2M5)/O (’ o ‘ o

which along with (3.43), (3.75), (3.77), and (3.81) gets

) dT} -t dt,

I < /0E {M2§3 exp(2M(52) + Mexp(2M62) /0(S 2<6M27'3 + M7'2> dT} -t dt
(3.98) < M&? exp(2M6?) <2M63 + 3M264).
One inserts (3.96)—(3.98) into (3.95) and applies (3.26) to finally acquire
|RIHD (&,m) — S ()|
< M§2{ [i + (; + 85 +2M 83 + 3M264> exp(2M52)}

(3.99) + (; + 8M6> exp(2M6%) zk: (g)]} < M§2§ (i)j

3=0
We combine (3.93), (3.94), and (3.99) to finish the proof of the lemma.
In view of Lemmas 3.2 and 3.3, we have the following.

LEMMA 3.4. For all k > 0 the inequalities
9 k
(3.100) [T m) = 10 (€ m)| < M€ (3) . I=W.R,S,

hold in Dy.
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Proof. The proof of the lemma is also based on the argument of induction. It is
obvious by (3.54) and (3.55) that

(WO )~ WO €,m)| < SME + Kog? < M
and
[RO(&,n) — RO (&, m)]
< |b(e)] + [b(el™)] + /:O) {Kot + M3 4+ AMP? + Mt} dt
+

1 K, 1 1
< ZME+ M(g“”) + 58+ MO M+ o ME — M)

N

< Mé¢? (; + M?5° + 2M5> < M&,

which indicate that each of the inequalities in (3.100) holds for n = 0. Assume they
are valid for n = k — 1. We shall check that they are preserved for n = k.

In order to achieve the goal, we first ebtimate the quantities |¢; (k) _ §i(k_1)| (i =
0,+). Without loss of generality, we absumef ) > § (k=1) (i =0,4). Recalling (3.30),
one knows that for i = 0, +

NG & N
/5(“ Atz (6Em) dt+/ A_(t, 2(t)) dt
i 0
£ 55’9*1)
=n= /5“”) N ¢0m) dt+/0 A_(t, 2(t)) dt,

from which we deduce

E(k)

i 3
/EMOE’“” —A-)dt = LM (AE“(t,zi’“’(t)) - A§“><t,z£’“><t>>) dt.

Thus for ¢ = 0, we have by (3.40) and (3.81)

1k .
Skl — (&)’
3
< %) (‘)‘OR’-’R(k)(t,Zék)(t)) R~ 1)( (k 1)( ))’
€o

+ Aos] - [S® (¢, 27 (1) = SEI (1, 257 )]
T sl |20 0) - zék_l)(t)|> dat
3
(‘014’112 +|Ci5|hs + |Cue) - ’Z(k) (kl)(t)o dt
(3.101) (M(Im + Ing) + M|z (t) - Z(()kl)(t)|> dt,

where
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12 = [R® (8,25 (1)) = RED (1, 28D 1)),
13 = [S®t, 27 (1) — SEV (1, 2V (1))

Similarly, for i = +, it follows that

|( (k)) ( (k— 1)) ’

5 (|A+s» |58, 247 (1) = sE (1, 70 ()]

N ST

+ P |- WO P @) = w2V @)

+|A+zy}zﬁﬂu)-z$—1%tn> dt

€
< /(k) <|A15
3

,+mﬂp@@—ﬁ”@oa

b
13

(3.102) < /(k> Mt? (Il4 + 115 + ’Z(f)( Srk 1)( )‘) dt,
&y

where

1= [S® 0 (1) — sV (e, V@),
Ls = [W® (¢, 20 6) = WD (e, 20 ).

To estimate I; (i = 12,...,15), we apply (3.83) and the induction assumptions to find

that
10, 2" () = 147D (8,270 @)
< [1®(t, 27 (1) = 1P (1,20 1))
1020 ) - 1 1><t,z<’“ Vo)
2 k—1
< [19] o000 = 0]+ ()
2 k—1
(3.103) < 3Mt|2M (1) — 257V (1) + M2 (3)

for I =W, R,S and i = 0,+£. Thus one has

k—1
Loy Tz < 3Mt|2{7(8) — 27V (1) +Mt2<§) ,
(3.104) k—1
La; Tis < 3Mt|280(8) — 257 (0] + M2 (;) .
In addition, we recall the relations for i = 0, +

13
+ [ WO ar

—p=2FD) /A(’“” () dr Ve g™ g
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to get as the derivations of (3.101) and (3.102)

£
k k— k k b o
1289 (8) — 2§ ”“”S/t AE (7, 28 (7)) = A (r, 2D ()] dr

¢ k) (k—1)

(3105) < / (M(112+113)+MT}ZO (T)*ZO (T)|) dr
t

and

k k— k k— P
2P ) - V)| < / INE (7, 29 (7)) = ALV (7, 2V ()] dr

(3.106) < / Mr? (114+115+ 1245 (r) —z$1>(r)|) dr.
t
One puts (3.104) into (3.105) and (3.106) respectively to arrive at
k k—1
267 (®) = 20" (1)

3 k—1
(3.107) < (@4 2m)|o0r) - V) ar g (3)
t

for t € [§, (k ),f] and
|20) - 2V )]

3 o\ k1
(3.108) < [orr 0 - L0 drsare(3)

t

for t € [§(k) ]. Now set

dgk) = max ‘zz(k) (t) — zgkfl)(t)|, 1=0,+.
telef™ &)

Then we acquire by (3.107) and (3.108)
k—1 9\ k1
d(k) < 4M252d(k) + M €3< ) , df) < 4M262d$€) + M2€5 (3> 5
which mean by the fact 4M?262 <
9\ k1 9\ k1
(3.109) i) < 2n2e? <3) ,dP <2me? <3> .

Combining with (3.101), (3.102), (3.104), and (3.109) yields

_ 2 [¢ 2\ "
(€52 — (€§F 9| < k/g {zM(thdgk> —|—Mt2(3> ) +Mtdgk>} dt

(k)

k-1 i k-1
,( TMAED +]\4253)<2> < 4M32E3 (g)

(3.110) ;

I/\
\w

and
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_ 3 [¢ 2\*7!
(€82 — (€13 < k/§<k> Mt2{2<3Mtd$“) +Mt2<3) > +d§f)} dt
+

k—1 k—1
(3.111) < §(2M3§8 +M2§5)<§) < 6]”;’55 (;) .

=

We now check that (3.100) are valid for n = k. For the function W, we see by
(3.48) that

(3.112) (WEED (& m) — W, n)| < Lig + L7,

where

5(1")
m:h@%—Mﬁ”%/”cﬁﬂw#”@ymu
13

(k—1)
0

§
m:lmwﬁm#mnaﬁlwakWWMMt
0

For the term Iyg, it follows that

f(k)
hﬁg/:UVﬂwfd“”w%“”@»ﬂdt
.
Z(k)
0 , B
< /g(kl) |P'(t) — C1(t, 2(t)) - t| dt
0 fék)
~ k—1 k—1
+/£(M |CL(t, 2(8) — OV (¢, 28 (t))] -t dt
0
(3113) = 118+119~

We recall (3.16)—(3.17) and the expression of C in (3.27) to know that

(3.114)

from which and the condition C; in (3.19) one has
(3.115) |W'(t) — C1(t, 2(1)) - t| < Kot®.

Thus we combine (3.115) and (3.110) to get

K _ M -
his < =2](69)° = (667 = Tel6) - 6

252 k-1
(3.116) §M§2Mk6 <§) .

We now derive the estimate of I19 by employing (3.38), (3.83), and (3.110),
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5(’@)

Iy < /g(kn {|01R| . |R(t,5(t)) - R(kfl)(t,zék—l)(t)ﬂ

+|Cus| - 80t 2(1) = SEV (8, 2V (@) + | Cra - |2 () — zé“><t>|} -t dt
5(!«)

- /. {|Cm> RO, 2() = ROV (7 0)

f(k 1)

+|Cus| - [S®D(E, 2(8) — SED (25D ()] + O - |2(1) — zé’“‘”<t>|} tdt

k)

{cu]- |7+ Crs| - 15870+ 1l (0] + 4 0 a

/(

M? B
/ { 3Mt2+M}'2Kot2-tdt§ &N =&Y
M
4

< M2 by (58’“1>>QISM£2M353<2)k_1.

k 3

For the term I;7, one obtains by the definitions of ;5 and I;3 in (3.101)

13
117§/ <|C’13|112+|ClS|I13+|Clz}d(()’“)> e
0
¢ 9\ k1
S/ ((6M2t+Mt)d5’“)+2M2t2(3) )-tdt
0

2 k—1 9 k—1
(3.117) SM§2(7M354+M62)(3> < ME.§. <3) .

Inserting (3.113) and (3.116)—(3.117) into (3.112) gives

M?252 M3§3 2 k-1
W) - WO )| < v (54 255 + 250 (3)

(3.118) < M¢g? (;)k

by the choice of ¢ in (3.50).
We next check the inequality for the function R in (3.100). From (3.48), we have

|[REHD(¢,m) — RW(&,n)]
§
(3.119) < Iy + ) {121 + Iog + I3 4 Ioq + Io5 +126+127} dt,
13

+3

where
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Iy = ’b( _(f)) . b( _(i_k—l))

(k) _ _ B _
B /§+ R*k=1) _ g(k=1) +A(k*1) (R(k 1 _ gk 1))2 +A(k’1)R(k—1)
(k=1 2 1 t 2

+ ALY U= L A Dy g g2 Ag“)t}(t, AV ) dt’

(k)

‘ () — b (k—l))_/£+ Ok (1, 211 (1)) dt‘

t

f-(#kil)
and
o |R®) (£, 247 (1)) — RE=D (8, 25D ()] + |98 (8, 28 (1)) — SED (¢, 28D 1))
21 — 2
R(K) _ g(k))2 L (R(—1) _ glk—1))2 .
Ins — \A&’“()(t B (1)) — Al 0,250 ),

Iog = | ALY R®) (¢, 29 (1)) — ALV RE=D (¢, 24D 1))

Iy = [AP) 50 (2,20 (1) — ALV sED (2, D (1))

)

Iy =t [AFPWO (1,20 (6) - AP THW D (1)

I = 2| AP (¢, 28 (1) — APVt 2V ),
Ly =t [AG (2, 20 (1) — AF D (1,250 (1))

It follows as in (3.113) that

€(k>

Iy < /(k ) |b/ @(kfl)(tvz_(i_k—l)(t)” dt
et
g g
</£(k_1> |0'(t) — ©(t. 2(1))| dt+/£(k_1> ot 2(t)) — 0* V¢, 2 V(1)) ar.
+ +

(3.120)

Applying the same argument as in (3.115), we can obtain by (3.18) and (3.19) that
(3.121) V' (t) — O(t, 2(t))| < Kot®.

Similar discussions as I19 arrive at

Ot 2(t) — 0 V(1,28 V(1) = 0%Vt 2(t) — 0D (1, 21V (1))
(k—1) (k—1) (k—1) (k—1) _ q(k—1))2
<{]Rz |+ St |+‘a,41 (R Sk=1))
2t 0z t
i A(ka)‘?IR(’“‘” - SEI(RETV +RETY) ‘Mé’“‘” RO
1 t 0z
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A (g |2 o)
- aALY
+]AFTD] |8k 4 ‘gz W k=]
+!A§k_1)\'|Wz(k1)|t+’a{§:1)t2+‘6{g’:1)t} 2| + |-V @)
< {6Mt + 54M>t* 4+ 36 M>t*} - 2Kot® < 5M>t*.

(3.122)

Here we used (3.52), (3.67), (3.83) and the following fact:

?

s | < A% [RED| 4 AG] |56+ 4%

=

< M-3Mt>2+ M- -3Mt>? + M < 6M?*52+ M < 2M.

We now put (3.121) and (3.122) into (3.120) and employ (3.111) to deduce

Iy < Z2|E) — €50+ M| (6)7 - (€Y
k—1
< (Me+ M2e2)|(e)? — (¢ < 2m¢ - 6M]:§5 <§)
62 k—1 B
(3.123) < Mg? (3) )

Moreover, we recall (3.103) and (3.109) to achieve the estimate of Io,

9\ k-1 9\ A1
(3.124) Iy < 3Md¥P + Mt<3> < (6M3¢° + Mt) (3> .
For the term 55, one has

2
AP @, A (1) = APV @ 2 )

(b 1‘|<R<’€>—S<k>> (t, 25 (8) — (R — 56=0)2(¢ 20 (1))
t

< 9M?13 . {M;s AR ) A (R (3)]
+ MW B (1,28 () = wED (¢, 270 (0)] + M40 (1) - zf‘”(t)!}
+ M - 6Mt - {|R<k>(t, 2() = RV, 2V @)

+[5® (2P (1) = sV, zi“)u))!}’
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which together with (3.103) and (3.109) yields
(3.125)

k—1
2
Iy < 2(9M3# + 6M>t) <3Mtd‘+’“) + Mt? <3) > +9MP3d Y
2 k—1 9 k—1 9 k—1
< Md'P +6(3Mt* + 2)M># (3> < 2MB3¢ (3> 418N (3> _

In a similar way as for Iy, we also have

k—1
2
Ing; Ing; Ios < Md + (M + 3M%?) Mt (3)

9 k—1 92 k—1
(3.126) §2M3§5(3> —|—2M2t2<3>

and
k—1

2 k—1 9 k—1 9
I%gtdgf)—i—QMQt‘l(S) §M2§5(3> +2M2t4(3> ,

k—1
2
(3.127) Iy < tMd < m2¢ <3> .

Summing up (3.119) and (3.123)—(3.127), we finally arrive at
|[REFD (&, m) — R (&, n)]

52 9 k—1 2 k—1 ¢
Me2—|( =2 = 6M3E + M M3 +18M3¢3
<uef(2) +(3) [ {oresan s ore siee)

+ 3(2M3€° + 2M*%) + 2(M3€° + 2M2t4)} dt

L(0% 1 2\ " L(2\F
wiz <me(% L) () e (2)

by the choice of § in (3.50). The above estimate is also true for S. The proof of the
lemma is complete by combining (3.118) and (3.128). |

We here provide a further remark on the higher-order compatibility condition (C2)
in (3.19).
Remark 2. The condition (Cz) in (3.19) is mainly used to establish the estimate

lg2( f))\ < Ko&? in the proof of Lemma 3.3. We comment that this condition (Cs)
and the corresponding regularity conditions in (2.19) and (2.21) can be relaxed such
that the function go(t) satisfies |g2(t)| < Kot'™" for constant v > 0. If so, then we
have the following inequalities instead of (3.83) in Lemma 3.3:

. ; k J
wiEn < ey (3) . IRVl lsPen] < ey (3)
j=0

=0
k i
RO (€, n) — S0 (€, m)| < Me+r S (i)
j=0

for some positive constant M depending on v. By checking carefully the proof of
Lemma 3.4, we see that the estimates in (3.100) are still valid.
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3.2.4. The existence and uniqueness of solutions. In view of Lemma 3.4,
it is obvious that the sequences (W®*) R®*) S())(¢ ) converge uniformly and the
limit functions, denoted by (W, R, S), are continuous. Moreover, by Lemma 3.2, the
functions (W, R, S) satisfy

(3.129) W& n) RE ) SEm)| <3ME,  |R(En) — S n)| < 3ME?

for any (£,m) € Ds. It is easily seen that the functions (W, R, S) also satisfy the system
of integral equations (3.45) and the initial conditions W (0,7n) = R(0,n) = S(0,7n) = 0.
In addition, from the relation between &; and &, n

€ &

i 0
it suggests that n = 2(&;) iff £ = & for ¢ = 0,+. Thus by (3.45) and (3.129) we have
W (&, 2(&0)) = h(&) and R(€4,2(€4)) = b(E+), which mean that the functions (W, R)
satisfy the boundary conditions in (3.23). The boundary condition S(t, 2(t)) = s(¢)
in (3.23) follows directly from (3.31).

We next check the initial conditions We(0,7) = Re(0,1) = S¢(0,n) = 0. To this
end, we shall show that the limits (W, R, S) obtained with the aid of Lemma 3.4 are
C! functions. According to the forms of integral equations (3.45), it is easy to see that
S(&,n) possesses one continuous derivative with respect to ¢ and then S¢(0,7) = 0.
For the functions W and R, we need derive estimates of &;¢ (¢ = 0, +). Differentiating
(3.130) with respect to & leads to

CoN 0z
)\1(5777) + L=
o e 0z 08 0z, :7)\_% )
525 /\1(5“2(50) — )\—(fz,g(fz))’ 85 (tfﬂ?) % 677 (t7£,77)3

which along with (3.40) and (3.129) lead to

Ky Ky
505 S ?7 5"!‘5 S 5727

from which and (3.115), (3.121) we know that W (&, n) and S(&,n) possess one con-
tinuous derivative with respect to & and then W¢(0,7) = R¢(0,1) = 0.

To establish the existence of (Wy, Ry, Sy) in D5, we consider the following linear
system of integral equations obtained by differentiating (3.45) with respect to 7:

82’0

£
Wy (&,m) = g91(&) + / {CutRz + C12tS, + C13t}an(t, 20(t)) dt,

{Rz _Sz +2A1(R_S)(Rz _Sz)
2t t

¢
Ry (&m) 292(£+)+/5

(3131) +A11Rz + Algsz + A13Wz + A14 + Tt}aaz’;;_(t, Z+(t)) dt,

(S, —R, R—S)(R,— S,
Sn(fﬂ?):/o { +231( )(t )+B1lsz

2t

0z_
+Bl2Rz + B13WZ + Bl4 + Tt} aiT](t’ Z_ (t)) dt.
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The coefficient functions in (3.131) are given in (3.68) but with the limit func-
tions (W, R, S, z;) replacing (W*) R(F) S(k) zlgk)). Clearly, by (3.129), the estimates
(3.79)—(3.82) are conservative. Let g3(t) be the solution of the following ODE problem:

dgs _ g3 R—5)(g92 — g3)
t

— g2 (
— 9B
dt 5 TP

93(0) = g5(0) = 0.

The solvability of the above ODE problem can be derived as in Lemma 3.1. Further-
more, the function gs(t) satisfies

+ B119g3 + Bi2g2 + Bi3zgy + By + T,

(3.132) g3(t) < Kot?,  g4(t) < Kot.

Now, for the integral system (3.131), we set (Wéo),ﬁgo)ﬁﬁo)) = (q1(%), 92(t), g3(t))
and construct the sequence of vector functions (Wz(k), ng), Sik))(k > 1) as follows:

(3.133)
k) ¢ = =0 924"
W D6n) = o)+ [ {Cuth + 0t + Cuat 221,000
. CORD G (R s)(EW - 5w
e = e + [ {Eg e v 2a =0 =5
+

>3 Il = 92\®
FALRY + A58% 4 AW 4 A+ Tt} T (42 (1) dt,

on
. N _RD  (RosyEY_FP)
0
= (k) 0 021
+B12RZ + BlBWz + Bl4 + Tt} T;(t, zZ_ (t)) dt,
where
9z K ~ =
87(7)7 = exp { / (014ng) + CmSik) + 016) (t, Zo(t)) dt},
3
8Z(k) t _ .
8; = exp { / <A155§k) + AW + A17> (t, 24 (1)) dt}v
3
az(k) t _ N
87—7 = exp { / (Blg,ng) + BigWH + B17> (t,z_(t)) dt}.
§

For the sequence (’Wvék), E%k), §,(,k))(k > 0), we first have the following.
LEMMA 3.5. For all k > 1 the inequalities

_ k J ~ ~ k J

W < ey (3) . IRPEnlI3PEn] < ey (3)
(3.134) J=0 PR j=0

B (&m) = S € m)| < Mgy <>

=0 \3

hold in Dy.
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Proof. The proof is completely similar to the proof of Lemma 3.3 and hence is
omitted here. |

We next establish a lemma to derive the uniform convergence of the sequence
Wi, By, 51 (k = 0).
LEMMA 3.6. For all k > 0 the inequalities

k
e - W e] < are(3 )
(3.135)

k
RV m) = By (€| |85V (6om) = S (6m)| < Me? (g)

hold in Dy.

Proof. We proceed by induction again. For n = 0, we have by (3.26), (3.79),
(3.80), (3.82), and (3.132)

|Wr§1) (5; 77) - W7§0) (57 T))|

(0)

€ 0z
< |g1(&0)| + 191 (8)] +/ {L‘|C11 g2l + t|Cal - |gs] + |Cl3|tH 8(7)7 dt
0

3
< 2Ko€ + / (2M?t? + Mt) exp(2M§?) dt
0

< Mf(é + (M?52 +6) exp(2M62)) < M¢
and

~ ~ 3 _
B — BV n)| <laateo)l +loa©)1 + [ {2224 or 010000 - g

(0)

d
+ M|ga| + 2M |g3| + 2Mt|g, | + 12M*t? + Kot}‘ +

dt
on

13
< 2Ko€? + / (2Kt + 3M3t3 + 14M?1?) exp(2M 6%) dt
0

< MgZ{; + (i + 6M5) eXp(2M52)} < Mg,

which indicate that each of the inequalities in (3.135) holds for n = 0.
Assume (3.135) holds for n = k — 1. Then for n = k, one obtains
(3-136) W€ m) = Wi (€ m)| < Ios + Iao,

where
¢ = =~ ~ ~ 9P
Is = / {t|C11| A|RK) — REZD] 4 4|Cya - [ S — S§k1)|}‘8(7)7‘ dt,
0

Bzék) azék_l)

on on

3 . ~
Iy = / {t|011| : |ng71)‘ +t[Crz] - |S§k71)| +t|013|}‘ dt.
£o
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It is easily checked by (3.134) and the induction assumptions that

£ 2 k—1 2 k—1
Iog g/ 2M-Mt2<3> exp(2M &%) dt < M¢ - M§? exp(2M52)<3>
0

and
3
I < / (6M>t? + Mt) exp(2M6?)
0
§
« / (M]ng) ~RUD| 4 ]S sgk—l>|) ds dt
0
3 9 k—1
< / (6M2t2+Mt)exp(2M52)~M253<3> dt
0
2 k—1
< M§~M526xp(2M52)<3> .

Putting the above into (3.136) gives

k—1 k
(3.137) [WV (€, m) — WH(€m)| < ME - 2167 eXP<2M52>(§> < M¢ @ '

For the function EZ, we have similarly
(3.138) |[RFHD(g,m) — R (€,m)] < T30 + I3,

where

R SEET
I3 :/
&+

2t
S 5 —~ — (k)
3 Eikfl) — §§k71) R_S|. Egkq) B §§’“*1) ~
131:/ {’ 2t ’+2|A1|| : t ‘+|A11\-|ng*1)|
&+

azf) aszl)

an an dt.

+ |A12| - !52’“‘”\ + |Ays] - ‘Wz(k_l)’ +[A1a] + |T|t}’

Using the same arguments as led to Isg and Iog yield

¢ 2 k—1 2 k—1 2 k—1
I3 < / {Mt<3) + 12M3t3(3) + 5M2t2(3> }exp(2M62) dt
0

k—1
< M¢€? (; +3M?5? + 2M6> exp(2M6?) (;)

and
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(3
I3 < / {2Mt + 18M3t3 4+ 27TM>t? + Mt}
0

6 —_—~ —_—~
X exp(2M52)/ M52<|S§’“) — Sk=D) 4wk — W§k1>|> ds dt
0

(5 9 k—1
/ {2Mt + 28M2t2} exp(2M§?) - M25* (3> dt
0

IN

IN

9\ k-1
M5 exp(2M6) (3> .

From the above, we finally acquire
~ ~ 1 2 k—1
R ) - R e | < 21e2( 5+ 3015+ 6) expizass?) ()

(3.139) < Mg? (;)k

by the choice of ¢ in (3.50). This estimate is also valid for the function g,,. We
combine (3.137) and (3.139) to end the proof of the lemma. |

Based on Lemmas 3.5 and 3.6, we know that the sequences (W,(,k), ES,’“), §1(7k))(§, n)
converge uniformly, which indicates that the functions (W, R,,S,)(§,n) are contin-
uous and satisfy

‘Rn(&n) - STI(5777)’ < 3M£2

Since the functions (W, R,S) satisfy (3.45) and have the required differentiability
properties, it is the smooth solution of (3.27) satisfying mixed-type boundary condi-
tions (3.23).

For the uniqueness, we consider the difference of solutions. Let (W7, Ry,.S1) and
(W2, Ry, S2) be two smooth solutions of (3.27). Denote W= Wy — W1, R= Ry — Ry
and S = S5 — S1. Then, by (3.49), (3.81), (3.129), and (3.140), (W, R, §) satisfy the
homogeneous integral inequality system

(3.140)

_ Y SN -
W(e,m| < 37 / (IR| +8]) dt,

o~ 5 A_A —_ _ ~ -~
Rl < [ {H5 S T+ R+ 18) | o

(3.141)

. E(R=S —~, ~ o
Stenl < [ {E5 5001+ R+ 18} e

[R5

~ ~ 3 — ~
!R(f,n)—S(ﬁ,n)IS/O { +M(W|+R|+|S|)}dt

for some positive constant M. By repeating the insertion of these in the right side of
(3.141), one can acquire that the functions (W, R, .S) must satisfy the inequalities of

the forms
N 2\ *
7 s3] < o0 ()

b
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for arbitrary k and some positive constant M*, which says that there holds W=~R=
S=0.

Finally, we note by (3.22) that the problem (3.27), (3.23) is equivalent to the
problem (3.5), (3.14). Hence the proof of Theorem 3.1 is complete.

4. Solutions in terms of physical variables. In view of the previous section,
the mixed-type boundary value problem (3.5), (3.14) admits a unique local classical
solution (H,U,V)(t,r) in the region D = {(t,r)| t €]0,6],7(62) — K&5 + Kt3 <r <

t)}. In this section, we convert this solution in the partial hodograph plane to that
in the original physical plane to construct a classical solution for Problem 1.
We first recall the coordinate transformation (3.1) to obtain

(41) 8£ B aﬁ @ B _Qi @ _ tanwwm, @ _ tanww,
’ oo J> ot J or J 7 or J

where J is the Jacobian defined in (3.2), and

0, = (tsinr — /1 —tZcosr)U + (tsinr ++/1 — t2cos7)V,

0, = —(tcosT + /1 —t2sinr)U — (tcosr — /1 — tZsinr)V,

w, =—(k+1—t})[sinr(U - V) — V1 —t2cosr Y + 2sinrG H],
= (k+1—1)[cosr(U - V) + V1 —ZsinrY 4+ 2cosrG HJ.

(4.2)

From (4.1) and (4.2), one finds that

(tcosr + 1 —t2sinr)U(t,r) + (tcosr — /1 ftQSinr)V(t,r)t

(43) T TR RORUE V) + GIOHE DV () — U]y
yt:_(tsinrf\/Wcosr) (t,7) + (tsinr + /1 — t2cosm)V (¢, )t
2F0{20(t, )V (8, 7) + Gu@) H (¢, r)[V(t,7) = U(t, )]}
and
oo o8 r(U(t,r) =V (t,r)) + msinrw +2cosrG1H(t,r)
4) " 2V1—2{2U(t, )V (t,r) + G1H(t,r)[V(t,r) = U(t, )]} ’

sinr(U(t,r) — V(t,r)) — VI — 2 cos p ZEIVED | ogin Gy H (L, 1)
21— 2{2U(t,r)V(t,r) + GLH (t,r)[V(t,r) — U(t,r)]} '

Let r = r_(t) be the negative characteristics of (3.5) defined by

Yr =

A5 dr_(t) V1 =22V (t,r_(t))t?
(#5) &~ FOVEL®) - GOHE - O)]

Then using (4.3)—(4.4) and doing simplifications, we have

da(t,r_(t)) tcosr+v1—t2sinr

() at  2F0)V(t,r) - GiH(t, )]
. dy(t,r_(t)) tsinr — /1 —t2cosr
at 2F()[V(tr) - GiH(t, )]
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Moreover, by (4.5), the region D' is divided into two subregions by the negative
characteristic r = 7(t) defined by

dr(t) _ VI- 2V ()t
At~ FOV(t,r)—Gi(t)H(t,r)]
7(0) = 7.

Denote D' = D' N{r < #(t)} and E; =D n{r > #(t)}. For any point ({,#) € D', we
know that the negative characteristic 7_(¢;1,7) intersects the line ¢ = 0 if (£,7) € D

and intersects the curve B/ A’ if (t,7) € Eg_. We now employ (4.6) to define the value
& =a(t,7),

(4.7)
0-1(7)
/i tcosr_(t;t, f'A) +V1—Zsinr_(t;1, fl) tat, (7)€ o
$(£ 7@) _ 0 2F(t)[V(t, 717( ;tvf)) - Gl(t)H(t,T, (tvtaf))] T -

_/i tecosr_(t;t,7) + 1 — 2sinr_(t;1,7)
P 2F@V (- (tE7) = Gt H(t,r— (7))

where 61, =1, and ¢! represent, respectively, the inverses of 0, 6, and v, and the
constant 7 is given by

/t V1 =2V (t,r_(t,t,7))t?
o FOW(t,r—(t,4,7) = Gi(t)H(t,r—(t,1,7))]
The numbers ¢ and 7 in (4.7) are determined by the following equations:

/” V1 = 2by(t)t2
S P

=

T o) 1 Ga (Do (D)
A VI =22V (t,r_(t,t,7))t?

T
i FOV(t,r_(t,t,7) — Gi()H(t,r_(t,t,7))]
We point out that the point (f, 7) is the intersection of the positive characteristic
r = 7(t) and the negative characteristic r = r_(¢;¢,7). With the same argument, we
can also define the value § = y(¢,7):

(4.8)
p(67())
P tsinr_(t4,7) — VI Peosr_ (1, 7) . ,
s _/0 2F()[V (t,7—(t;1,7)) — G1(t)H(t,r,(t,£,f))]t dt, (t,7) € D_,
y(t,7) =<
6=1(F)
i tsinr_(t;1,7) — V1 —t2cosr_(t;1,7) A
_/f 2F(t>[V(t77"7< ; A7 'ﬁ)) _ Gl(t)H(t,’l",(t,'E,’F))]t dt, (t,T) e D+_

Therefore, corresponding to the region D' in the (t,r)-plane, we obtain the region D
in the original (z,y)-plane

D ={(z,y)l = = a(t,r),y = y(t,r), (t,r) € D'}.
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In addition, one can use (4.1) to calculate the Jacobian of the map (¢,7) — (x,y)

_O(z,y) t
o(t,r)  2F(M{U(t, )V (t,r) + GLH (t, ) [V (t,r) — U(t, )]}’

which is strictly less than zero in D' \ {t = 0}. Thus the map (t,r) — (z,y) is a local
one-to-one mapping for ¢ € (0,d]. Moreover, we claim that this mapping is global
one-to-one, including the line ¢t = 0. To confirm the claim, we note by (3.129) and
the fact (U +V)/t = (R — S)/t + 2a; that the functions i, yt, T, ¥ are well-defined
up to the line ¢ = 0. In addition, it follows by (3.129), (2.30), and the assumptions in
(2.32) that

U(t,r) >0, V(tr)<D0,

cosT(U—-V)++1 —t2sian+ 4 +2cosrG1H >0,
on D', which imply by (4.3) and (4.4) that =z, < 0, y, < 0 and z; > 0, y; < 0 with
y; = 0 and z; = 0 iff £ = 0. Thanks to the above properties, for any two different
points (t1,71) and (t2,73) in E/, ift] =to, 71 <rgorry =ry,t; <to, then y(ty,ry) >
y(ta,re); if t1 < ta,r1 < 7o, then y(t1,71) < y(te,r2); if t1 < to,71 > 7o, then
(tl,rl) < x(t2,72). This means that for any different points (¢1,71) and (¢2,72) in
D', the images (x(t1,71),y(t1,71)) and (x(t2,72), y(ta2, r2)) are different. Thus we have
estabhshed the global one-to-one property of the mapping (¢,7) — (z,y). Therefore,
for any point (*,y*) € D, there exists a unique corresponding point (t*,7*) € D
Now, we can construct the functions (0, w, H)(z,y) as follows:

O(z*,y") =r", w(z",y") =1— (t*)?,
(4.9) H(a",y*) = H({t",r") ¥ («",y") € D.
We next check that the functions (6, w, H)(z,y) defined in (4.9) are a solution of

system (2.12). By the construction of x(¢,r) and y(¢,r) in (4.7)—(4.8), we can obtain
that the functions (0, w, H)(x,y) satisfy the boundary conditions. Indeed, for any

point (z,¢(z)) on BC, it is easy to see that (£,7) = (0,0(x)) satisfies the following
equation:

@(él(f) /t tcosr_(t;f,fA) + V1 —t2sinr_(t; ff)A ; dt>
o 2E@)[V (&, r-(t;1,7)) — ()(““(ttr)]
tsinr_(t;t,7) — 1 —tZcosr_(t;1,7
WV (tr-(t:1,7) = Gu(O)H(t,r—(:1,7))]
Since the mapping (£,7) — (z,y) is global one-to-one, then (0,0(x)) is the unique
solution of (4.10). Hence we have w(z,¢(z)) = 1 and 0(z,p(x)) = O(x). Other
boundary conditions can be checked similarly. Moreover, the functions (6, w)(z,y)
are uniformly continuous up to the sonic boundary, which follow directly from the
uniform boundedness of d,r,d,r, 0,1 —t2,0,/1 — 2 by (4.2). For the function
H(z,y), we can derive the expressions of Hy, Hy,

@10)  =p@0 - [ g

H,=-2 sinr<(U _R‘i)S(U +AG1H) - Ut)
=2+ 2a;
H, = 2COS’/‘<(U 7R‘Z)S(U +AG1H) - Ut)H
=2+ 201
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which are uniformly bounded by (3.129) and (3.140). Hence the function H(z,y) is
also uniformly continuous up to the sonic boundary. We now check that the functions
(0,w, H)(x,y) satisfy system (2.12). From (4.9) we can define

w=arcsinw(z,y), a=0(z,y) +w(z,y), 8 =0(x,y) —wx,y) ¥V (z,y) €D.

Then one calculates by (4.2)

cosw = . cosw .
0" w = (cos afl, + sinab,) + ———— (cos aw, + sin aw,)
2 Y K+ w2 Y

o0 +
K
= (tcosr — /1 —1t2sinr)f, + (tsinr + /1 — t2 cosr)b,
t . .
[(tcosT — /1 —t2sinr)w, + (tsinr + /1 — t2 cosr)w,]

+ k+1—1t2
= —t(tcosT — V1 —t2sinr) - 2sinrG1H + t(tsinr + /1 — t2cosr) - 2cosrG1 H
=2iv1—2G1(t)H (t,r) = sin(2w)G(w) H (z,y),

which indicates that the second equation of (2.12) holds. The other two equations in
(2.12) can be verified analogously.
We now construct the function Q = Q(x,y) by solving the linear problem

(4.11) { cos a(z,y) Qs + sina(z, y)Qy = G(@(z,y)) H(z,y),

W, p(x)) = Qz), = € [z, z0).
The solvability of linear problem (4.11) on the region D follows directly from the
continuity of a,w, and H. Furthermore, the mixed-type boundary conditions (2.18)

and (2.19) are satisfied by the construction of the functions (6, w, Q)(z,y). Hence the
proof of Theorem 2.1 is completed. Similarly, we can solve the linear equations

cosf(z,y)Sy +sinf(z,y)Sy, =0, cosbd(x,y)B, +sinb(z,y)B, =0

subject to the corresponding boundary values to acquire the functions S (x,y) and
B(z,y) in D. Finally, we define the functions (p,u,v,p)(x,y) as

B 2kw?(z,y)B(z,y) v = eln cos 0(z,y) S sin 0(x, y)
_¢ I = I =

_(_2Bay ey \TT 26B(x, ) (z,y) \ 7T
”‘(wmw?(x,ynsu,y)) - p=5 ’y)(v[%+w2(z,y)]s(x,y)> ’

)

which is a classical solution to the full Euler equations (1.1) near the corner point B.
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