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We study the stable recovery of complex k-sparse signals from as few phaseless 
measurements as possible. The main result is to show that one can employ �1
minimization to stably recover complex k-sparse signals from m ≥ O(k log(n/k))
complex Gaussian random quadratic measurements with high probability. To do 
that, we establish that Gaussian random measurements satisfy the restricted 
isometry property over rank-2 and sparse matrices with high probability. This 
paper presents the first theoretical estimation of the measurement number for stably 
recovering complex sparse signals from complex Gaussian quadratic measurements.
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1. Introduction

1.1. Sparse phase retrieval

Suppose that x0 ∈ Fn is a k-sparse signal, i.e., ‖x0‖0 ≤ k, where F ∈ {R, C}. We are interested in 
recovering x0 from

yj = |〈aj ,x0〉|2 + wj , j = 1, . . . ,m,

where aj ∈ Fn is a measurement vector and wj ∈ R is the noise. This problem is called sparse phase retrieval
[2,9,12]. Let A : Fn×n → Rm be a linear map which is defined as

A(X) = (a∗
1Xa1, . . . ,a∗

mXam),

* Corresponding author.
E-mail addresses: yxia@hznu.edu.cn (Y. Xia), xuzq@lsec.cc.ac.cn (Z. Xu).

1 Yu Xia was supported by NSFC grant (11901143), Zhejiang Provincial Natural Science Foundation (LQ19A010008), Department 
of Education of Zhejiang Province Science Foundation (Y201840082).
2 Zhiqiang Xu was supported by Beijing Natural Science Foundation (Z180002) and by NSFC grant (11688101).
https://doi.org/10.1016/j.acha.2020.08.001
1063-5203/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.acha.2020.08.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2020.08.001&domain=pdf
mailto:yxia@hznu.edu.cn
mailto:xuzq@lsec.cc.ac.cn
https://doi.org/10.1016/j.acha.2020.08.001


2 Y. Xia, Z. Xu / Appl. Comput. Harmon. Anal. 50 (2021) 1–15
where X ∈ Fn×n, aj ∈ Fn, j = 1, . . . , m. By abuse of notation we set

A(x) := A(xx∗) = (|〈a1,x〉|2, . . . , |〈am,x〉|2),

where x ∈ Fn. We also set

x̃0 := {cx0 : |c| = 1, c ∈ F}.

The aim of sparse phase retrieval is to recover x̃0 from noisy measurements y = A(x0) + w, with y =
(y1, . . . , ym)T ∈ Rm and w = (w1, ..., wm)T ∈ Rm. One question in sparse phase retrieval is: how many 
measurements yj , j = 1, . . . , m, are needed to stably recover x̃0? For the case F = R, in [5], Eldar and 
Mendelson established that m = O(k log(n/k)) Gaussian random quadratic measurements are enough to 
stably recover k-sparse signals x̃0. For the complex case, Iwen, Viswanathan and Wang suggested a two-stage 
strategy for sparse phase retrieval and show that m = O(k log(n/k)) measurements can guarantee the stable 
recovery of x̃0 [7]. However, the strategy in [7] requires the measurement matrix to be written as a product 
of two random matrices. Hence, it still remains open whether one can stably recover arbitrary complex 
k-sparse signal x̃0 from m = O(k log(n/k)) Gaussian random quadratic measurements. One of the aims 
of this paper is to confirm that m = O(k log(n/k)) Gaussian random quadratic measurements are enough 
to guarantee the stable recovery of arbitrary complex k-sparse signals. In fact, we do so by employing �1
minimization.

1.2. �1 minimization

Set A := (a1, . . . , am)T ∈ Fm×n. One classical result in compressed sensing is that one can use �1
minimization to recover k-sparse signals, i.e.,

argmin
x∈Fn

{‖x‖1 : Ax = Ax0} = x0,

provided that the measurement matrix A meets the RIP condition [4]. Recall that a matrix A satisfies the 
k-order RIP condition with RIP constant δk ∈ [0, 1) if

(1 − δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2

holds for all k-sparse vectors x ∈ Fn. Using tools from probability theory, one can show that Gaussian 
random matrices satisfy the k-order RIP with high probability provided m = O(k log(n/k)) [1].

Naturally, one is interested in employing �1 minimization for sparse phase retrieval. We consider the 
following model:

argmin
x∈Fn

{‖x‖1 : |Ax| = |Ax0|}. (1.1)

Although the constrained conditions in (1.1) are non-convex, the model (1.1) is more amenable to algorithmic 
recovery. In fact, algorithms have been developed for solving (1.1) [9,15,16]. For the case F = R, the 
performance of (1.1) was studied in [11,6,13,8]. Particularly, in [11], it was shown that if A ∈ Rm×n is a 
random Gaussian matrix with m = O(k log(n/k)), then

argmin
x∈Rn

{‖x‖1 : |Ax| = |Ax0|} = ±x0

holds with high probability. The methods developed in [11] heavily depend on Ax0 is a real vector and one 
still does not know the performance of �1 minimization for recovering complex sparse signals. As mentioned 
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in [11]: “The extension of these results to hold over C cannot follow the same line of reasoning”. In this 
paper, we extend the result in [11] to the complex case by employing a new idea on the RIP of quadratic 
measurements.

1.3. Our contribution

In this paper, we study the performance of �1 minimization for recovering complex sparse signals from 
phaseless measurements y = A(x0) + w, where ‖w‖2 ≤ ε. Particularly, we focus on the model

min
x∈Cn

‖x‖1 s.t. ‖A(x) − y‖2 ≤ ε. (1.2)

Although the constrained conditions in (1.2) are non-convex, Many numerical experiments were made to 
demonstrate empirical success of the proposed algorithms. For example, in [9], Moravec, Romberg, and 
Baraniuk proposed an iterative projection algorithm to solve the noiseless version of (1.2). Furthermore, 
the ADM algorithm for solving (1.2) was introduced in [16]. However, there are very few results about the 
theoretical performance of the model.

Our main idea is to lift (1.2) to recover rank-one and sparse matrices, i.e.,

min
X∈Hn×n

‖X‖1 s.t. ‖A(X) − y‖2 ≤ ε, rank(X) = 1.

Throughout this paper, we use Hn×n to denote the set of Hermitian n × n-matrices. Moreover, we require 
that A satisfies the following restricted isometry property over low-rank and sparse matrices:

Definition 1.1. We say that the map A : Hn×n → Rm satisfies the restricted isometry property of order 
(r, k) if there exist positive constants c and C such that the inequality

c‖X‖F ≤ 1
m
‖A(X)‖1 ≤ C‖X‖F (1.3)

holds for all X ∈ Hn×n with rank(X) ≤ r and ‖X‖0,2 ≤ k.

Throughout this paper, we use ‖X‖0,2 to denote the number of non-zero rows in X. Since X is Hermitian, 
we have ‖X‖0,2 = ‖X∗‖0,2. We next show that a Gaussian random map A satisfies the RIP of order (2, k)
with high probability provided m � k log(n/k). Here we use A � B to denote A ≥ C0B, where C0 ∈ R+ is 
an absolute constant. The notation � can be defined similarly.

Theorem 1.2. Assume that the linear measurement A(·) is defined as

A(X) = (a∗
1Xa1, . . . ,a∗

mXam),

with aj independently taken as complex Gaussian random vectors, i.e., aj ∼ N (0, 12In×n) + N (0, 12In×n)i. 
If

m � k log(n/k),

with probability at least 1 − 2 exp(−c0m), A satisfies the restricted isometry property of order (2, k), i.e.

0.12‖X‖F ≤ 1
m
‖A(X)‖1 ≤ 2.45‖X‖F ,

for all X ∈ Hn×n with rank(X) ≤ 2 and ‖X‖0,2 ≤ k (also ‖X∗‖0,2 ≤ k).
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In the next theorem, we show that (1.2) can robustly recover complex k-sparse signals from phaseless 
measurements provided A satisfies the restricted isometry property of order (2, 2ak) with a > 0 being 
suitably chosen.

Theorem 1.3. Assume that A(·) satisfy the RIP condition of order (2, 2ak) with RIP constant c, C > 0
satisfying

c− 4C√
a
− C

a
> 0. (1.4)

For any k sparse signals x0 ∈ Cn, the solution to (1.2) x# satisfies

‖x#(x#)∗ − x0x∗
0‖F ≤ C1

2ε√
m
, (1.5)

where

C1 =
1
a + 4√

a
+ 1

c− 4C√
a
− C

a

.

Furthermore, we have

min
c∈C,|c|=1

‖c · x# − x0‖2 ≤ 2
√

2C1
ε√

m‖x0‖2
. (1.6)

Remark 1.4. According to Lemma 3.2, it obtains that

min
c∈C,|c|=1

‖c · x# − x0‖2 ≤ ‖x# − x0‖2 ≤
√

2‖x
#(x#)∗ − x0x∗

0‖F
‖x0‖2

� ε√
m‖x0‖2

.

On the other hand, we have

min
c∈C,|c|=1

‖c · x# − x0‖2 ≤ ‖x# − x0‖2 ≤ ‖x#‖2 + ‖x0‖2 ≤ ‖x#‖1 + ‖x0‖2 ≤ ‖x0‖1 + ‖x0‖2.

Hence, we obtain that

min
c∈C,|c|=1

‖c · x# − x0‖2 ≤ min
{

2
√

2C1
ε√

m‖x0‖2
, ‖x0‖2 + ‖x0‖1

}
. (1.7)

For the case where ‖x0‖2 + ‖x0‖1 ≤ 2
√

2C1
ε√

m‖x0‖2
, we obtain that

2
√

2C1
ε√
m

≥ ‖x0‖2
2 + ‖x0‖2‖x0‖1

≥ ‖x0‖2
1/k + ‖x0‖2

1/
√
k = ‖x0‖2

1(1/k + 1/
√
k),

which implies ‖x0‖1 ≤
√

2
√

2C1 ·
√
ε · (k/m)1/4. Noting that

‖x0‖2 + ‖x0‖1 ≤ 2‖x0‖1 ≤ 2
√

2
√

2C1 ·
√
ε ·

(
k

m

)1/4

,

we obtain that
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min
c∈C,|c|=1

‖c · x# − x0‖2 � min
{

ε√
m‖x0‖2

,
√
ε ·

(
k

m

)1/4
}
.

Remark 1.5. For ‖x0‖2 ≥ 1, the error bound minc∈C,|c|=1 ‖c · x# − x0‖2 � ε√
m

presented in Theorem 1.3
is sharp in the sense that there exists x0 ∈ Cn and w ∈ Rm so that minc∈C,|c|=1 ‖c · x# − x0‖2 � ε/

√
m

holds with a positive constant probability. Indeed, take x0 = (1, 0, ..., 0)T ∈ Rn and y = A(x0) + w with 
w = (1, ..., 1) ∈ Rm. Set ε =

√
10m. Assume that x# is a solution to

min
x∈Cn

‖x‖1, s.t. ‖A(x) − y‖2 ≤
√

10m.

We claim that x# = 0 with probability at least 1/2, which implies that

‖x#(x#)∗ − x0x∗
0‖F = 1 � ε√

m

holds with probability at least 1/2. To prove x# = 0 with probability at least 1/2, it is enough to show 
that P{‖A(0) − y‖2

2 ≤ 10m} ≥ 1/2. Note that

E(‖A(0) − y‖2
2) = E

⎛
⎝ m∑

j=1
(|aj,1|2 + 1)2

⎞
⎠ = E

⎛
⎝ m∑

j=1

(
|aj,1|4 + 2|aj,1|2 + 1

)⎞⎠ = 5m.

According to the Markov inequality, we obtain that

P{‖A(0) − y‖2
2 ≤ 10m} ≥ 1 − 5m

10m = 1
2 .

Hence x# = 0 with probability at least 1/2.

According to Theorem 1.2, if aj , j = 1, . . . , m are complex Gaussian random vectors, then A satisfies RIP 
of order (2, 2ak) with constants c = 0.12 and C = 2.45 with high probability provided m � 2ak log(n/2ak). 
To guarantee (1.4) holds, it is enough to require a > (8C/c)2. Therefore, combining Theorem 1.2 and 
Theorem 1.3 with ε = 0, we can obtain the following corollary:

Corollary 1.6. Suppose that x0 ∈ Cn is a k-sparse signal. Assume that A = (a1, . . . , am)T where aj , j =
1, . . . , m is Gaussian random vectors, i.e., aj ∼ N (0, 12In×n) + N (0, 12In×n)i. If m � k log(n/k), then

argmin
x∈Cn

{‖x‖1 : |Ax| = |Ax0|} = x̃0

holds with probability at least 1 − 2 exp(−c0m). Here c0 > 0 is an absolute constant.

2. Proof of Theorem 1.2

We first introduce a Bernstein-type inequality which plays a key role in our proof.

Lemma 2.1. [10] Let ξ1, . . . , ξm be i.i.d. sub-exponential random variables and K := maxj ‖ξj‖ψ1 . Then for 
every ε > 0, we have

P

⎛
⎝
∣∣∣∣∣∣
1
m

m∑
ξj −

1
m
E

⎛
⎝ m∑

ξj

⎞
⎠
∣∣∣∣∣∣ ≥ ε

⎞
⎠ ≤ 2 exp

(
−c0mmin

(
ε2

K2 ,
ε

K

))
,

j=1 j=1
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where c0 > 0 is an absolute constant.

We next introduce some key lemmas needed to prove Theorem 1.2, and then present the proof of Theo-
rem 1.2.

Lemma 2.2. Assume z1, z2, z3 and z4 are independently drawn from N (0, 1). If t ∈ [−1, 0], we have

E|z2
1 + z2

2 + tz2
3 + tz2

4 | = 2
(

1 + t2

1 − t

)
.

Proof. When t = 0, we have E|z2
1 + z2

2 + tz2
3 + tz2

4 | = E|z2
1 + z2

2 | = 2. If t ∈ [−1, 0], taking coordinates 
transformation as z1 = ρ1 cos θ, z2 = ρ1 sin θ, z3 = ρ2 cosφ, and z4 = ρ2 sinφ, we obtain that

E|z2
1 + z2

2 + tz2
3 + tz2

4 | =
(

1
2π

)2 ∫
R4

|z2
1 + z2

2 + tz2
3 + tz2

4 | exp
(
−z2

1 + z2
2 + z2

3 + z2
4

2

)
dz1dz2dz3dz4

=
(

1
2π

)2 2π∫
0

dθ

2π∫
0

dφ

∞∫
0

∞∫
0

ρ1ρ2|ρ2
1 + tρ2

2| exp
(
−ρ2

1 + ρ2
2

2

)
dρ1dρ2

=
∞∫
0

∞∫
0

ρ1ρ2|ρ2
1 + tρ2

2| exp
(
−ρ2

1 + ρ2
2

2

)
dρ1dρ2

=
∫

ρ1>
√
−tρ2

ρ1ρ2(ρ2
1 + tρ2

2) exp
(
−ρ2

1 + ρ2
2

2

)
dρ1dρ2

+
∫

ρ1≤
√
−tρ2

ρ1ρ2
(
−tρ2

2 − ρ2
1
)
exp

(
−ρ2

1 + ρ2
2

2

)
dρ1dρ2

= 2
1 − t

+ 2t2

1 − t
= 2(1 + t2)

1 − t
.

Here, we evaluate the last integrals as follows:
∫

ρ1>
√
−tρ2

ρ1ρ2
(
ρ2
1 + tρ2

2
)
exp

(
−ρ2

1 + ρ2
2

2

)
dρ1dρ2

=
∞∫
0

ρ2 exp
(
−ρ2

2
2

)
dρ2

∞∫
√
−tρ2

ρ3
1 exp

(
−ρ2

1
2

)
dρ1 + t

∞∫
0

ρ3
2 exp

(
−ρ2

2
2

)
dρ2

∞∫
√
−tρ2

ρ1 exp
(
−ρ2

1
2

)
dρ1

=
∞∫
0

ρ2 exp
(
−ρ2

2
2

)(
−tρ2

2 exp
(
tρ2

2
2

)
+ 2 exp

(
tρ2

2
2

))
dρ2 + t

∞∫
0

ρ3
2 exp

(
−ρ2

2
2

)
exp

(
tρ2

2
2

)
dρ2

=2
∞∫
0

ρ2 exp
(
− (1 − t)ρ2

2
2

)
dρ2 = 2

1 − t
.

We can use the similar method to obtain∫
√

ρ1ρ2
(
−tρ2

2 − ρ2
1
)
exp

(
−ρ2

1 + ρ2
2

2

)
dρ1dρ2 = 2t2

1 − t
. �
ρ1≤ −tρ2
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Lemma 2.3. Set

X := {X ∈ Hn×n | ‖X‖F = 1, rank(X) ≤ 2, ‖X‖0,2 ≤ k}

which is equipped with Frobenius norm. The covering number of X at scale ε > 0 is less than or equal to (
9
√

2en
εk

)4k+2
.

Proof. Note that

X = {X ∈ Hn×n : X = UΣU∗, Σ ∈ Λ, U ∈ U},

where

Λ = {Σ ∈ R2×2 : Σ = diag(λ1, λ2), λ2
1 + λ2

2 = 1}

and

U = {U ∈ Cn×2 : U∗U = I, ‖U‖0,2 ≤ k} = ∪#T=kUT .

Here T ⊂ {1, . . . , n}, and

UT := {U ∈ Cn×2 : U∗U = I, U = UT,:},

where UT,: ⊂ Cn×2 is the matrix obtained by keeping the rows of U indexed by T and setting all other 
rows to zero. Note that ‖U‖F =

√
2 for all U ∈ UT and that the real dimension of UT is at most 4k for 

any fixed support T with #T = k. We use QT to denote an ε/3-net of UT with #QT ≤ (9
√

2/ε)4k. Then 
Qε := ∪#T=kQT is an ε/3-net of U with

#Qε ≤
(en
k

)k
(

9
√

2
ε

)4k

≤
(

9
√

2en
εk

)4k

.

We use Λε to denote an ε/3-net of Λ with #Λε ≤ (9/ε)2.
Set

Nε := {UΣU∗ | U ∈ Qε, and Σ ∈ Λε}.

Then for any X = UΣU∗ ∈ X , there exists U0Σ0U
∗
0 ∈ Nε with ‖U −U0‖F ≤ ε/3 and ‖Σ −Σ0‖F ≤ ε/3. So, 

we have

‖UΣU∗ − U0Σ0U
∗
0 ‖F ≤ ‖UΣU∗ − U0ΣU∗‖F + ‖U0ΣU∗ − U0Σ0U

∗‖F + ‖U0Σ0U
∗ − U0Σ0U

∗
0 ‖F

≤ ‖U − U0‖F ‖ΣU∗‖ + ‖U0‖‖Σ − Σ0‖F ‖U∗‖ + ‖U0Σ0‖‖U∗ − U0‖F
≤ ε.

Therefore, Nε is an ε-net of X with

#Nε ≤ #Qε · #Λε ≤
(

9
√

2en
εk

)4k

(9/ε)2 ≤
(

9
√

2en
εk

)4k+2

provided that n ≥ k and ε ≤ 1. �
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We now have the necessary ingredients to prove Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality, we assume that ‖X‖F = 1. We first consider E‖A(X)‖1. 
Noting that rank(X) ≤ 2 and ‖X‖F = 1, we can write X in the form of

X = λ1u1u∗
1 + λ2u2u∗

2,

where λ1, λ2 ∈ R satisfying λ2
1 + λ2

2 = 1 and u1, u2 ∈ Cn satisfying ‖u1‖2 = ‖u2‖2 = 1, 〈u1, u2〉 = 0. 
Therefore, we obtain that

a∗
kXak = λ1|u∗

1ak|2 + λ2|u∗
2ak|2,

where u∗
1ak and u∗

2ak are independently drawn from N (0, 12) + N (0, 12 )i. Then

1
m
‖A(X)‖1 = 1

m

m∑
j=1

∣∣λ1|u∗
1aj |2 + λ2|u∗

2aj |2
∣∣ = 1

m

m∑
j=1

ξj , (2.1)

where the ξj are independent copies of the following random variable

ξ =
∣∣λ1z

2
1 + λ1z

2
2 + λ2z

2
3 + λ2z

2
4
∣∣

where z1, z2, z3, z4 ∼ N (0, 12) are independent. Without loss of generality, we assume that |λ1| ≥ |λ2| and 

hence |λ1| ∈ [
√

2
2 , 1]. Note that ξ can also be rewritten as

ξ = |λ1|
∣∣z2

1 + z2
2 + tz2

3 + tz2
4
∣∣ (2.2)

with t := λ2/λ1 satisfying |t| ≤ 1. Since 1
mE‖A(X)‖1 = E(ξ), we first focus on E(ξ). According to (2.2), we 

have

E(ξ) ≤ |λ1|E(z2
1 + z2

2 + z2
3 + z2

4) ≤ 2, (2.3)

as E(z2
j ) = 1

2 for j = 1, . . . , 4. On the other hand, when t ≥ 0, we obtain that

E(ξ) ≥ |λ1|E(z2
1 + z2

2) ≥
√

2
2 . (2.4)

For t ∈ [−1, 0], Lemma 2.2 (note the missing factor two by the slightly different variances of zi) shows that

E(ξ) = |λ1|
(

1 + t2

1 − t

)
≥ 0.57. (2.5)

Combining (2.3), (2.4) and (2.5), we obtain that

0.57 ≤ E(ξ) ≤ 2.

Note that ξ is a sub-exponential variable with ‖ξ‖ψ1 ≤
∑4

i=1 ‖z2
i ‖ψ1 ≤ c̃, where ‖ · ‖ψ1 := supp≥1 p

−1(E| ·
|p)1/p denotes the sub-exponential norm. We set

X := {X ∈ Hn×n : ‖X‖F = 1, rank(X) ≤ 2, ‖X‖0,2 ≤ k},
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and use Nε to denote an ε-net of X with respect to the Frobenius norm ‖ · ‖F , i.e. for any X ∈ X , there 
exists X0 ∈ Nε such that ‖X − X0‖F ≤ ε. Based on Lemma 2.1, equality (2.1) and a union bound, we 
obtain that

0.57 − ε0 ≤ 1
m
‖A(X0)‖1 ≤ 2 + ε0, for all X0 ∈ Nε (2.6)

holds with probability at least 1 − 2 · #Nε · exp(− c0
16mε20).

Note that A is continuous at X ∈ X and X is a compact set. We can set

UA := max
X∈X

1
m
‖A(X)‖1.

For any X ∈ X , there exists X0 ∈ Nε such that ‖X − X0‖F ≤ ε and ‖X − X0‖0,2 ≤ k. Without loss of 
generality, assume that supp(X−X0) ⊂ [1 : k] ×[1 : k] where [1 : k] := [1, k] ∩Z. Note that rank(X−X0) ≤ 4. 
We can use the eigenvalue decomposition to obtain that (X −X0)[1:k]×[1:k] = UΣU∗ with U ∈ Ck×4, and 
Σ = diag(λ1, . . . , λ4). Take Σ1 = diag(λ1, λ2, 0, 0) and Σ2 = diag(0, 0, λ3, λ4). Then X − X0 = X1 + X2

where X1 =
[
UΣ1U

∗, 0
0, 0

]
∈ Hn×n and X2 =

[
UΣ2U

∗, 0
0, 0

]
∈ Hn×n. If X1 = 0 or X2 = 0, we have 

rank(X −X0) ≤ 2, and

1
m
‖A(X −X0)‖1 ≤ UAε.

Otherwise, X1
‖X1‖F

, X2
‖X2‖F

∈ X and 〈X1, X2〉 = 〈Σ1, Σ2〉 = 0. Therefore, we can obtain that

1
m
‖A(X −X0)‖1 = 1

m
‖A(X1 + X2)‖1 ≤ 1

m
‖A(X1)‖1 + 1

m
‖A(X2)‖1

≤ UA‖X1‖F + UA‖X2‖F ≤
√

2UA‖X1 + X2‖F ≤
√

2UAε.

Thus

1
m
‖A(X)‖1 ≤ 1

m
‖A(X0)‖1 + 1

m
‖A(X −X0)‖1 ≤ 2 + ε0 +

√
2UAε. (2.7)

According to the definition of UA, (2.7) implies UA ≤ 2 + ε0 +
√

2UAε and hence which implies that

UA ≤ 2 + ε0

1 −
√

2ε
.

We also have

1
m
‖A(X)‖1 ≥ 1

m
‖A(X0)‖1 −

1
m
‖A(X −X0)‖1 ≥ 0.57 − ε0 −

√
2UAε ≥ 0.57 − ε0 −

√
2 2 + ε0

1 −
√

2ε
ε.

Hence, we obtain that the following holds with probability at least 1 − 2 · #Nε · exp(− c0
16mε20)

(
0.57 − ε0 −

√
2 2 + ε0

1 −
√

2ε
ε

)
‖X‖F ≤ 1

m
‖A(X)‖1 ≤

(
2 + ε0

1 −
√

2ε

)
‖X‖F , for all X ∈ X .

Taking ε = ε0 = 0.1, according to Lemma 2.3, we obtain #Nε ≤
(

90
√

2en
k

)4k+2
. Thus when m ≥

O(k log(en/k)), we obtain that
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0.12‖X‖F ≤ 1
m
‖A(X)‖1 ≤ 2.45‖X‖F , for all X ∈ X

holds with probability at least 1 − 2 exp(−cm). �
3. Proof of Theorem 1.3

In the following, we will use a technical tool based on results in [3,14] which provides convex k-sparse 
decompositions of certain signals in space.

Lemma 3.1. [3,14] Suppose that v ∈ Rp satisfying ‖v‖∞ ≤ θ, ‖v‖1 ≤ sθ where θ > 0 and s ∈ Z+. Then we 
have

v =
N∑
i=1

λiui, 0 ≤ λi ≤ 1,
N∑
i=1

λi = 1,

where ui is s-sparse with (supp(ui)) ⊂ supp(v), and

‖ui‖1 = ‖v‖1, ‖ui‖∞ ≤ θ.

We also need the following lemma:

Lemma 3.2. If x, y ∈ Cd, and 〈x, y〉 ≥ 0, then

‖xx∗ − yy∗‖2
F ≥ 1

2‖x‖
2
2‖x − y‖2

2.

Similarly, we have

‖xx∗ − yy∗‖2
F ≥ 1

2‖y‖
2
2‖x − y‖2

2.

Proof. We set a := ‖x‖2, b := ‖y‖2 and t := 〈x,y〉
‖x‖2‖y‖2

. A simple calculation shows that

‖xx∗ − yy∗‖2
F − 1

2‖x‖
2
2‖x − y‖2

2 = h(a, b, t)

where

h(a, b, t) := a4 + b4 − 2(ab)2t2 − 1
2a

2(a2 + b2 − 2abt).

Hence, to this end, it is enough to show that h(a, b, t) ≥ 0 provided a, b ≥ 0 and 0 ≤ t ≤ 1. For any fixed a
and b, h(a, b, t) achieves the minimum for either t = 0 or t = 1. For t = 0, we have

h(a, b, 0) = a4 + b4 − 1
2a

4 − 1
2a

2b2 = 1
2(a2 − 1

2b
2)2 + 7

8b
4 ≥ 0. (3.1)

When t = 1, we have

h(a, b, 1) = a4 + b4 − 1
2a

2(a2 + b2) − 2(ab)2 + a3b

= (a− b)2(1
2a

2 + b2 + 2ab) ≥ 0
(3.2)

Combining (3.1) and (3.2), we arrive at the conclusion. �
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Now we have enough ingredients to prove Theorem 1.3.

Proof of Theorem 1.3. We assume that x# is a solution to (1.2). Noting exp(iθ)x# is also a solution to 
(1.2) for any θ ∈ R, in order to apply Lemma 3.2 in (3.10), we assume that

〈x#,x0〉 ∈ R and 〈x#,x0〉 ≥ 0.

We consider the programming

min
X∈Hn×n

‖X‖1 s.t. ‖A(X) − y‖2 ≤ ε, rank(X) = 1. (3.3)

Then a simple observation is that X# is the solution to (3.3) if and only if X# = x#(x#)∗.
Set X0 := x0x∗

0 and H := X# − X0 = x#(x#)∗ − x0x∗
0. Hence, we have to find an upper bound for 

‖H‖F . Denote T0 = supp(x0). Set T1 as the index set which contains the indices of the ak largest elements 
of x#

T c
0

in magnitude, and T2 contains the indices of the next ak largest elements, and so on. For simplicity, 
we set T01 := T0 ∪ T1 and H̄ := HT01,T01 , where HS,T denotes the sub-matrix of H with the row set S and 
the column set T . We claim that

‖H‖F ≤ ‖H̄‖F + ‖H − H̄‖F ≤
(

1
a

+ 4√
a

+ 1
)
‖H̄‖F ≤

1
a + 4√

a
+ 1

c− 4C√
a
− C

a

2ε√
m
, (3.4)

which implies the conclusion (1.5). According to Lemma 3.2, we obtain that

min
c∈C,|c|=1

‖c · x# − x0‖2 ≤ ‖x# − x0‖2 ≤
√

2‖H‖F /‖x0‖2 ≤
1
a + 4√

a
+ 1

c− 4C√
a
− C

a

2
√

2ε√
m‖x0‖2

.

We next turn to prove (3.4). The first inequality in (3.4) follows from

‖H − H̄‖F ≤
(

1
a

+ 4√
a

)
‖H̄‖F (3.5)

and the second inequality follows from

‖H̄‖F ≤ 1
c− 4C√

a
− C

a

2ε√
m
. (3.6)

To this end, it is enough to prove (3.5) and (3.6).
Step 1: We first present the proof of (3.5). A simple observation is that

‖H − H̄‖F ≤
∑

i≥2,j≥2
‖HTi,Tj

‖F +
∑
i=0,1

∑
j≥2

‖HTi,Tj
‖F +

∑
j=0,1

∑
i≥2

‖HTi,Tj
‖F

=
∑

i≥2,j≥2
‖HTi,Tj

‖F + 2
∑
i=0,1

∑
j≥2

‖HTi,Tj
‖F .

(3.7)

We first consider the first term on the right-hand side of (3.7). Note that

∑
i≥2,j≥2

‖HTi,Tj
‖F =

∑
i≥2,j≥2

‖x#
Ti
‖2 · ‖x#

Tj
‖2 =

⎛
⎝∑

i≥2
‖x#

Ti
‖2

⎞
⎠

2

≤ 1
ak

‖x#
T c
0
‖2
1

= 1 ‖HT c,T c‖1 ≤ 1 ‖HT0,T0‖1 ≤ 1‖HT0,T0‖F ≤ 1‖H̄‖F .

(3.8)
ak 0 0 ak a a
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Here, the first inequality follows from ‖x#
Ti
‖2 ≤ ‖x#

Ti−1
‖1/

√
ak, for i ≥ 2. The second inequality is based on 

‖H −HT0,T0‖1 ≤ ‖HT0,T0‖1. Indeed, according to ‖X#‖1 ≤ ‖X0‖1, we have

‖H −HT0,T0‖1 = ‖X# −X#
T0,T0

‖1 ≤ ‖X0‖1 − ‖X#
T0,T0

‖1 ≤ ‖X0 −X#
T0,T0

‖1 = ‖HT0,T0‖1.

We next turn to 
∑

i=0,1
∑

j≥2 ‖HTi,Tj
‖F . Re-using ‖x#

Tj
‖2 ≤ ‖x#

Tj−1
‖1/

√
ak, we have, for i ∈ {0, 1},

∑
j≥2

‖HTi,Tj
‖F = ‖x#

Ti
‖2 ·

∑
j≥2

‖x#
Tj
‖2 ≤ 1√

ak
‖x#

T c
0
‖1‖x#

Ti
‖2 ≤ 1√

a
‖x#

Ti
‖2‖x#

T01
− x0‖2. (3.9)

The last inequality is based on ‖x#‖1 ≤ ‖x0‖1, which leads to

‖x#
T c
0
‖1 ≤ ‖x0‖1 − ‖x#

T0
‖1 ≤ ‖x#

T0
− x0‖1 ≤

√
k‖x#

T0
− x0‖2 ≤

√
k‖x#

T01
− x0‖2.

Substituting (3.8) and (3.9) into (3.7), we obtain that

‖H − H̄‖F ≤
∑

i≥2,j≥2
‖HTi,Tj

‖F +
∑
i=0,1

∑
j≥2

‖HTi,Tj
‖F +

∑
j=0,1

∑
i≥2

‖HTi,Tj
‖F

≤ 1
a
‖H̄‖F + 2

√
2√
a
‖x#

T01
‖2‖x#

T01
− x0‖2 ≤

(
1
a

+ 4√
a

)
‖H̄‖F ,

(3.10)

where the second inequality is based on ‖x#
T0
‖2 +‖x#

T1
‖2 ≤

√
2‖x#

T01
‖2, and the third inequality follows from 

Lemma 3.2.
Step 2: We next prove (3.6). Since

‖A(H)‖2 ≤ ‖A(X#) − y‖2 + ‖A(X0) − y‖2 ≤ 2ε,

we have

2ε√
m

≥ 1√
m
‖A(H)‖2 ≥ 1

m
‖A(H)‖1 ≥ 1

m
‖A(H̄)‖1 −

1
m
‖A(H − H̄)‖1. (3.11)

In order to get a lower bound of 1
m‖A(H̄)‖1 − 1

m‖A(H − H̄)‖1, we bound 1
m‖A(H̄)‖1 from below and 

1
m‖A(H − H̄)‖1 from above. As rank(H̄) ≤ 2 and ‖H̄‖0,2 ≤ (a + 1)k, we obtain by RIP of A that

1
m
‖A(H̄)‖1 ≥ c‖H̄‖F . (3.12)

Since H − H̄ can be written as

H − H̄ = (HT0,T c
01 + HT c

01,T0) + (HT1,T c
01 + HT c

01,T1) + HT c
01,T

c
01 ,

we have

1
m
‖A(H − H̄)‖1 ≤ 1

m
‖A(HT0,T c

01 + HT c
01,T0)‖1 + 1

m
‖A(HT1,T c

01 + HT c
01,T1)‖1 + 1

m
‖A(HT c

01,T
c
01)‖1. (3.13)

According to the RIP condition, for i ∈ {0, 1}, we have
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1
m
‖A(HTi,T c

01 + HT c
01,Ti

)‖1 ≤
∑
j≥2

1
m
‖A(HTi,Tj

+ HTj ,Ti
)‖1 ≤

∑
j≥2

C‖HTi,Tj
+ HTj ,Ti

‖F

≤ C
∑
j≥2

(‖x#
Ti

(x#
Tj

)∗‖F + ‖x#
Tj

(x#
Ti

)∗‖F ) = 2C
∑
j≥2

‖x#
Ti
‖2‖x#

Tj
‖2

≤ 2C√
a
‖x#

Ti
‖2‖x#

T01
− x0‖2,

(3.14)

where the first inequality follows from

HTi,T c
01 + HT c

01,Ti
=

∑
j≥2

(HTi,Tj
+ HTj ,Ti

) =
∑
j≥2

(x#
Ti

(x#
Tj

)∗ + x#
Tj

(x#
Ti

)∗)

and the last inequality is obtained as in (3.9). To bound 1
m‖A(HT c

01,T
c
01)‖1, note that

HT c
01,T

c
01 = x#

T c
01

(x#
T c
01

)∗

with ‖x#
T c
01
‖∞ ≤ ‖x#

T1
‖1/(ak). Set θ := max{‖x#

T1
‖1/(ak), ‖x#

T c
01
‖1/(ak)}. We assume that Φ :=

Diag(Ph(x#
T c
01

)) is the diagonal matrix with diagonal elements being the phase of x#
T c
01

, i.e., Φ−1x#
T c
01

is 
a real vector. According to Lemma 3.1, we have

Φ−1x#
T c
01

=
N∑
i=1

λiui, 0 ≤ λi ≤ 1,
N∑
i=1

λi = 1,

where ui is ak-sparse, and

‖ui‖1 = ‖x#
T c
01
‖1, ‖ui‖∞ ≤ θ,

which leads to

‖ui‖2 ≤
√

‖ui‖1‖ui‖∞ ≤
√

θ‖x#
T c
01
‖1.

If θ = ‖x#
T1
‖1/(ak), we have

‖ui‖2 ≤

√
‖x#

T1
‖1‖x#

T c
01
‖1

ak
=

√
‖HT1,T c

01‖1

ak

≤
√

‖H −HT0,T0‖1

ak
≤

√
‖HT0,T0‖1

ak
≤

√
‖HT0,T0‖F

a
≤

√
‖H̄‖F

a
.

If θ = ‖x#
T c
01
‖1/(ak), we have

‖ui‖2 ≤

√
‖x#

T c
01
‖1‖x#

T c
01
‖1

ak
=

√
‖HT c

01,T
c
01‖1

ak

≤
√

‖H −HT0,T0‖1

ak
≤

√
‖HT0,T0‖1

ak
≤

√
‖HT0,T0‖F

a
≤

√
‖H̄‖F

a
.

Thus we can obtain that
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‖ui‖2 ≤

√
‖H̄‖F

a
, for i = 1, . . . , N. (3.15)

Since

HT c
01,T

c
01 = x#

T c
01

(x#
T c
01

)∗ =
(

N∑
i=1

λiΦui

)(
N∑
i=1

λiΦui

)∗

=
∑
i<j

λiλjΦ(uiu∗
j + uju∗

i )Φ−1 +
∑
i

λ2
iΦuiu∗

i Φ−1,

based on the RIP condition, we can obtain that

1
m
‖A(HT c

01,T
c
01)‖1 ≤

∑
i<j

Cλiλj‖(uiu∗
j + uju∗

i )‖F +
∑
i

Cλ2
i ‖uiu∗

i ‖F

≤
∑
i<j

2Cλiλj‖ui‖2‖uj‖2 +
∑
i

Cλ2
i ‖ui‖2

2

≤ C
‖H̄‖F

a

(∑
i

λi

)2

= C
‖H̄‖F

a
,

(3.16)

where the third line follows from (3.15). Now combining (3.14) and (3.16), we obtain that

1
m
‖A(H − H̄)‖1 ≤ 1

m
‖A(HT0,T c

01 + HT c
01,T0)‖1 + 1

m
‖A(HT1,T c

01 + HT c
01,T1)‖1 + 1

m
‖A(HT c

01,T
c
01)‖1

≤ 2C√
a
‖x#

T0
‖2‖x#

T01
− x0‖2 + 2C√

a
‖x#

T1
‖2‖x#

T01
− x0‖2 + C

‖H̄‖F
a

≤ 2
√

2C√
a

‖x#
T01

‖2‖x#
T01

− x0‖2 + C
‖H̄‖F

a

≤ C

(
4√
a

+ 1
a

)
‖H̄‖F .

(3.17)

The last inequality uses Lemma 3.2. Based on (3.12), (3.17) and (3.11), we obtain that

2ε√
m

≥ 1
m
‖A(H̄)‖1 −

1
m
‖A(H − H̄)‖1

≥ c‖H̄‖F − C

(
4√
a

+ 1
a

)
‖H̄‖F =

(
c− 4C√

a
− C

a

)
‖H̄‖F .

According to the condition (1.4), it implies that

‖H̄‖F ≤ 1
c− 4C√

a
− C

a

2ε√
m
.

Thus, we arrive at the conclusion (3.6). �
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