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1. Introduction
1.1. Sparse phase retrieval

Suppose that xg € F™ is a k-sparse signal, i.e., [|xo|lo < k, where F € {R,C}. We are interested in
recovering xo from

y; = [{a;,x0)* +w;, j=1,...,m,

where a; € F” is a measurement vector and w; € R is the noise. This problem is called sparse phase retrieval
[2,9,12]. Let A : F™*™ — R™ be a linear map which is defined as

A(X) = (aj Xay,...,a;, Xa,),
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where X € F™*™ a; e F",j =1,...,m. By abuse of notation we set
A(x) = Alxx*) = ([(a, %)%, - [{am, x)[?),

where x € F™. We also set

Xo = {exg:lc]=1,ceF}.

The aim of sparse phase retrieval is to recover Xg from noisy measurements y = A(xg) + w, with y =
(Y1, ym)T € R™ and w = (wy,...,w,)T € R™. One question in sparse phase retrieval is: how many
measurements y;,j = 1,...,m, are needed to stably recover X¢? For the case F = R, in [5], Eldar and
Mendelson established that m = O(klog(n/k)) Gaussian random quadratic measurements are enough to
stably recover k-sparse signals Xq. For the complex case, Iwen, Viswanathan and Wang suggested a two-stage
strategy for sparse phase retrieval and show that m = O(klog(n/k)) measurements can guarantee the stable
recovery of Xq [7]. However, the strategy in [7] requires the measurement matrix to be written as a product
of two random matrices. Hence, it still remains open whether one can stably recover arbitrary complex
k-sparse signal %o from m = O(klog(n/k)) Gaussian random quadratic measurements. One of the aims
of this paper is to confirm that m = O(klog(n/k)) Gaussian random quadratic measurements are enough
to guarantee the stable recovery of arbitrary complex k-sparse signals. In fact, we do so by employing ¢4
minimization.

1.2. {1 minimization

Set A := (ay,...,a,,)T € F™ ", One classical result in compressed sensing is that one can use ¢;
minimization to recover k-sparse signals, i.e.,

argmin{||x||; : Ax = Axg} = %o,
xeFn

provided that the measurement matrix A meets the RIP condition [4]. Recall that a matrix A satisfies the
k-order RIP condition with RIP constant &y € [0, 1) if

(1= )lIxl3 < | Ax|3 < (1+ 60) 113

holds for all k-sparse vectors x € F™. Using tools from probability theory, one can show that Gaussian
random matrices satisfy the k-order RIP with high probability provided m = O(klog(n/k)) [1].

Naturally, one is interested in employing ¢; minimization for sparse phase retrieval. We consider the
following model:

argmin{||x||1 : |Ax| = |Axo|}. (1.1)
xelkn

Although the constrained conditions in (1.1) are non-convex, the model (1.1) is more amenable to algorithmic
recovery. In fact, algorithms have been developed for solving (1.1) [9,15,16]. For the case F = R, the

performance of (1.1) was studied in [11,6,13,8]. Particularly, in [11], it was shown that if A € R™*™ is a

random Gaussian matrix with m = O(klog(n/k)), then

argmin{||x||1 : |Ax| = |Axo|} = £x¢

x€R”

holds with high probability. The methods developed in [11] heavily depend on Axq is a real vector and one
still does not know the performance of ¢; minimization for recovering complex sparse signals. As mentioned
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in [11]: “The extension of these results to hold over C cannot follow the same line of reasoning”. In this
paper, we extend the result in [11] to the complex case by employing a new idea on the RIP of quadratic
measurements.

1.8. Our contribution

In this paper, we study the performance of /; minimization for recovering complex sparse signals from
phaseless measurements y = A(xg) + w, where ||w||2 < e. Particularly, we focus on the model

min xll st [AG) vl < e (1.2)

Although the constrained conditions in (1.2) are non-convex, Many numerical experiments were made to
demonstrate empirical success of the proposed algorithms. For example, in [9], Moravec, Romberg, and
Baraniuk proposed an iterative projection algorithm to solve the noiseless version of (1.2). Furthermore,
the ADM algorithm for solving (1.2) was introduced in [16]. However, there are very few results about the
theoretical performance of the model.

Our main idea is to lift (1.2) to recover rank-one and sparse matrices, i.e.,

min || X1 st [JAX) —yll2 <e rank(X) = 1.
XeHnxn

Throughout this paper, we use H"*" to denote the set of Hermitian n X n-matrices. Moreover, we require
that A satisfies the following restricted isometry property over low-rank and sparse matrices:

Definition 1.1. We say that the map A : H"*"™ — R™ satisfies the restricted isometry property of order
(r, k) if there exist positive constants ¢ and C such that the inequality

1
clXllr < AKX < CllX]IF (1.3)

holds for all X € H"*" with rank(X) <r and || X|[o,2 < k.

Throughout this paper, we use || X||o,2 to denote the number of non-zero rows in X. Since X is Hermitian,
we have || X|lo2 = || X*[|o,2. We next show that a Gaussian random map A satisfies the RIP of order (2, k)
with high probability provided m 2 klog(n/k). Here we use A 2 B to denote A > CyB, where Cy € Ry is
an absolute constant. The notation < can be defined similarly.

Theorem 1.2. Assume that the linear measurement A(-) is defined as
A(X) = (ajXay,...,a, Xap,),

with a; independently taken as complex Gaussian random vectors, i.e., a; ~ N(0, %Ian) + N(0, %Inxn)i.

If
m 2 klog(n/k),
with probability at least 1 — 2exp(—com), A satisfies the restricted isometry property of order (2,k), i.e.
1
012Xl < A < 245X,

for all X € H™ "™ with rank(X) < 2 and || X|jo2 < k (also | X*|lo2 < k).
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In the next theorem, we show that (1.2) can robustly recover complex k-sparse signals from phaseless
measurements provided A satisfies the restricted isometry property of order (2,2ak) with a > 0 being
suitably chosen.

Theorem 1.3. Assume that A(-) satisfy the RIP condition of order (2,2ak) with RIP constant ¢,C > 0
satisfying

c———=>0. (1.4)

ok (%) = o < 1 (1.5)
where
st Tl
QZC_E_Q
va a

Furthermore, we have

€

; #
min  ||c-x¥ — xgll2 < 2V20) ———. 1.6
B ol = 2V o
Remark 1.4. According to Lemma 3.2, it obtains that
H(H\* _ *
min HC-X# _XOHQ < HX# _X0||2 < \/QHX (X ) XOXOHF 5 € )
c€C,le|=1 [[%0l|2 vm|[xol[2
On the other hand, we have
cmin_ e s —xolla < | = xofl2 < [l 2 4 xol2 < [1x* o+ ol < [Ixoll: + x>
c ,le|=
Hence, we obtain that
. # . €
min ||c- x7 — xg||2 < min { 2vV2C; ———, ||xo]||2 + ||x . 1.7
| ola < min {2V3C ol + ol 17)

For the case where ||xg||2 + ||%0|[1 < QﬂClm, we obtain that

220

— > %03 + [[%oll2]1%01
vm oo
> |Ixoll3/k + lIxoll3/VE = |[xol3(1/k + 1/VE),

which implies ||xo[|1 < v/2v2C - /e - (k/m)1/4. Noting that

o\ /4
Iall + [l < 2ol < 2v/2v301 - v (£)

we obtain that
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. g\ 14
i Cx# <min{ ——— | — .
Ceg}ﬁ:l\lc X X0|2Nlrmn{\/E”XO”Q,\/E (m) }

Remark 1.5. For ||xol|2 > 1, the error bound min.cc j¢j=1 [|¢ - x* — Xoll2 < = bresented in Theorem 1.3

is sharp in the sense that there exists xo € C" and w € R™ so that mingec =1 [|c- x¥ = xol2 2 ¢/v/m
holds with a positive constant probability. Indeed, take xo = (1,0, ...,0)T € R™ and y = A(xg) + w with
w = (1,...,1) € R™. Set € = v/10m. Assume that x* is a solution to

min ||x]|1, st |JAX) —yll2 < V10m.

xeCn

We claim that x# = 0 with probability at least 1/2, which implies that

I () = xoxilr =12 =
holds with probability at least 1/2. To prove x# = 0 with probability at least 1/2, it is enough to show
that P{|.A(0) — y||3 < 10m} > 1/2. Note that

m

E(lA0) —y[I3) =E [ Y (laja>+1)* | =E | > (lajal* +2fa;1* + 1) | =5m.

j=1 j=1

According to the Markov inequality, we obtain that

om 1
P{||A(0) —y|3 <10m} >1— — = .
{IA©) ~ y113 < 10m} > 1- 2% — 2
Hence x# = 0 with probability at least 1/2.
According to Theorem 1.2, if a;,j = 1,..., m are complex Gaussian random vectors, then A satisfies RIP

of order (2,2ak) with constants ¢ = 0.12 and C' = 2.45 with high probability provided m > 2aklog(n/2ak).
To guarantee (1.4) holds, it is enough to require a > (8C/c)?. Therefore, combining Theorem 1.2 and
Theorem 1.3 with € = 0, we can obtain the following corollary:

Corollary 1.6. Suppose that xg € C™ is a k-sparse signal. Assume that A = (ay,...,a,)T where a;,j =
1,...,m is Gaussian random vectors, i.e., a; ~ N(0, 3L,xn) + N(0, 3L xn)i. If m 2 klog(n/k), then

argmin{||x||; : |[Ax| = |Ax¢|} = %o
x€Cn

holds with probability at least 1 — 2exp(—com). Here co > 0 is an absolute constant.
2. Proof of Theorem 1.2

We first introduce a Bernstein-type inequality which plays a key role in our proof.

Lemma 2.1. [10] Let &1, ..., &y be i.i.d. sub-exponential random variables and K = max; |||y, . Then for
every € > 0, we have

1 — 1 " e .
P E;@_EE jz::léj >€ <2exp<—c0mmm<ﬁ,?>)7
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where cog > 0 is an absolute constant.

We next introduce some key lemmas needed to prove Theorem 1.2, and then present the proof of Theo-
rem 1.2.

Lemma 2.2. Assume z1, z2, 23 and z4 are independently drawn from N(0,1). If t € [-1,0], we have

1+¢
Ez%—&-z%—i—tzg—i—tzZ:Z(lt).

Proof. When t = 0, we have E|z7 + 23 + t23 + t23| = E|2] + 23| = 2. If t € [~1,0], taking coordinates
transformation as z1 = pj cosf, z3 = p1sinf, z3 = pa cos ¢, and z4 = po sin ¢, we obtain that

zf+z§+z§+zi
2

2 7'(
1 +
:(g) /de/d¢//p1p2p1+tp2exp( pi pg)dp dps
0 0
+
//plpzlp? + tp3| exp (plng> dp1dps
00

2 2
+
/ p1p2(pi + tp3) exp (—%) dp1dps

1\2
E|23 4 25 4 t23 + tz3]| = (%> /|zf + 25 +t23 +t23 | exp (— ) dz1dzadzgdzy
R4

p1>V/—tp2
2 2 i+ 3
+ P12 (=tpy = pi) exp | === ) dprdp;
p1<V/—tp2
2 202 2(1417)

17t+17t_ 1—t¢

Here, we evaluate the last integrals as follows:

/ p1p2 (7 + tp3) exp <—#> dp1dps
p1>v/—=1p2
% 2 % 2 % 2 % 2
=/p2 exp <—72) dps / p} exp —%) dpy +t/p§ exp (—%) dps / p1exp (—31) dpy
0 VEps 0

V—lp2

s 2 02 02 it 2 02
T () (st () 00 () oo () ()
0 0
1L -t)p3 2
dpy = ——.
/PQ €Xp ( B) P2 1—¢
0

We can use the similar method to obtain

2, 2 2
+ 2t
/ p1p2 (—tps — pi) exp (%) dprdps = :

1-—1t
p1<V/—tp2
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Lemma 2.3. Set
X ={XeH"" || X||r=1, rank(X) <2, [|X|lo2 <k}

which is equipped with Frobenius norm. The covering number of X at scale ¢ > 0 is less than or equal to
(9\/§en)4k+2
ek :

Proof. Note that

X={XeH"" . X =UXU", €A, Uel},
where

A={ZcR¥? : ¥ =diag(\1, \a), NI+ 23 =1}
and

U={UecC™?2 : UU=I, |Uloz <k} =Ugr—ilr.
Here T C {1,...,n}, and
Ur ={UecC™? . U'U=1, U=Ur.},

where Up. C C™*? is the matrix obtained by keeping the rows of U indexed by T and setting all other
rows to zero. Note that ||U||r = /2 for all U € Uz and that the real dimension of Ur is at most 4k for

any fixed support T with #7T = k. We use Q7 to denote an ¢/3-net of Ur with #Q7 < (9v2/€)**. Then
Qe := Upr—;Qr is an €/3-net of U with

#.< () (%)% < (9“56”)%.

k € ek

We use A, to denote an €/3-net of A with #A. < (9/¢)%.
Set

Ne = {UXU* | U € Q., and X € A }.

Then for any X = UXU* € X, there exists UyXoUg € N with ||U — Up|lr < €/3 and |2 — Zo||r < €/3. So,
we have

||UZU>'< — UOEOUE;HF < HUEU* — U()EU*HF + ||U'02U>'< — U()E()U*HF + ||U020U* — UOEOUSHF
<|NU = Uollp|IZU*[| + [[Uo |12 = Soll 21U + [[UoZo [ U* — Vol #
<e
Therefore, N, is an e-net of X with

4k+2

9v/2en
k

4k
SN < #Q. - A, < ( : ) (9/e)? < (9?”)

provided that n > kand e < 1. O
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We now have the necessary ingredients to prove Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality, we assume that || X || p = 1. We first consider E|A(X)||1.
Noting that rank(X) < 2 and || X||r = 1, we can write X in the form of

* *
X = )\1111111 + )\21121127

where A, A2 € R satisfying A2 + A3 = 1 and uy,uz € C” satisfying ||uill2 = |Juz2 = 1, (u3,uz) = 0.
Therefore, we obtain that

a;Xay = )\1|u”1‘ak\2 + )\2|u§ak|2,
where uja; and ujay, are independently drawn from N(0, 2) + A(0, )i. Then
LA = 237 e a2 = L3 (21)
m m e~ m e~
where the ¢; are independent copies of the following random variable
&= ’/\12% +A123 + Aoz3 + )\gzZ’

where 21, 22,23, 24 ~ N(0, 3) are independent. Without loss of generality, we assume that |[A;| > |A2| and
hence |\ € [@, 1]. Note that & can also be rewritten as

E=|M||25 + 25 +tz5 + t2]| (2.2)

with ¢ := Ay/A; satisfying [¢| < 1. Since LE[A(X)|l1 = E(£), we first focus on E(). According to (2.2), we
have

E(&) < IMIE(2] 4 23 + 25 + 23) < 2, (2.3)

as E(ZJQ) = % for j =1,...,4. On the other hand, when ¢ > 0, we obtain that

V2

E(€) > M[EGE +23) > L= (2.4)

For ¢t € [-1,0], Lemma 2.2 (note the missing factor two by the slightly different variances of z;) shows that

142
E(€) = |\ ( 1t p ) > 0.57. (2.5)
Combining (2.3), (2.4) and (2.5), we obtain that
057 < E(€) < 2.

Note that ¢ is a sub-exponential variable with ||€||,, < Z?:l 122 |ly, < ¢ where ||« ||y, :=sup,>; p~ " (E|-
|P)1/? denotes the sub-exponential norm. We set

X ={X e H"" : | X||r =1, rank(X) <2, | X2 <k},
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and use N, to denote an e-net of X with respect to the Frobenius norm || - ||, i.e. for any X € X, there
exists Xog € N; such that || X — Xy||r < e. Based on Lemma 2.1, equality (2.1) and a union bound, we
obtain that

1
0.57— ¢ < EHA(XO)Hl < 2+ ¢, for all Xy € N, (2.6)

holds with probability at least 1 — 2 - #N, - exp(—$&meg).
Note that A is continuous at X € X and X is a compact set. We can set

1
Ua :=max EHA(X)HI-

For any X € X, there exists X € N, such that || X — Xo||r < € and || X — Xollo2 < k. Without loss of
generality, assume that supp(X —Xo) C [1: k] x[1 : k] where [1: k] := [1, k]NZ. Note that rank (X — Xy) < 4.
We can use the eigenvalue decomposition to obtain that (X — Xo){1:x]x[1:4) = UXU™ with U € CF*4, and
¥ = diag(A1,...,\1). Take 37 = diag(A1, A2,0,0) and o = diag(0,0, A3, A\y). Then X — Xy = X7 + X

where X; = {UE(%U ’ g} € H"*"™ and Xy = [Ung ’ 8] € H™™ If X; = 0 or Xy = 0, we have

rank(X — Xy) <2, and
1
—[JA(X = Xo)[[1 < Uae.
m
Otherwise, H?ﬁ, H?ﬁ € X and (X1, Xo) = (X1, X2) = 0. Therefore, we can obtain that
L AGK = Xo)l = — ACKG + X2l < —[ACE) 1 + —JACE)]
- o)li=— 1 2l = — Dl +— 2l
S UA|X1||F 4+ Ual| Xallr < V2UA|| X1 + Xa||r < V2U ge.
Thus
1 1 1
EHA(X)Hl < EHA(XO)Hl + EHA(X — Xo)[l1 <2+ €0+ V2Ue. (2.7)

According to the definition of Uy, (2.7) implies U4 < 2 + € + v/2U 4¢ and hence which implies that

24 ¢
Uy < .
A_l—\/ie

We also have

2+60
€.
1 —+/2¢

1 1 1
A 2 A = A = Xo)ll 2 057~ co — VBUe > 0.57 — e — V2

Hence, we obtain that the following holds with probability at least 1 — 2 - #N, - exp(—&meg)

24 ¢
1— /2

2+ 1
(057 - 0 = VB2 ) e < ACO I <

I X||F, forall X € X.
—V/2¢ )

Taking ¢ = ¢y = 0.1, according to Lemma 2.3, we obtain #MN, < (% . Thus when m >

O(klog(en/k)), we obtain that
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1
0.12|| X || r < EHA(X)”l <245|X||p, foral X eX
holds with probability at least 1 — 2exp(—cm). O
3. Proof of Theorem 1.3

In the following, we will use a technical tool based on results in [3,14] which provides convex k-sparse
decompositions of certain signals in space.

Lemma 3.1. [3,1/] Suppose that v € RP satisfying ||v|lco < 0, ||V]1 < s0 where 8 >0 and s € Z. Then we

have
N N
VZZAiuu 0< A<, Z)\izL
i=1 i=1
where w; is s-sparse with (supp(u;)) C supp(v), and
Jaills = [[vlle,  [aille <6

We also need the following lemma:

Lemma 3.2. If x,y € C¢, and (x,y) > 0, then
* * 1
™ = yy* I = 5lIx3lx = vz
Similarly, we have
* * 1
o™ = yy* (17 = 5llyl3lx = ylIz-

Proof. We set a := ||x||2, b:= ||y||2 and ¢ := %

. A simple calculation shows that
* * 1
o™ = yy* I = 5 Ix[3Ix = ¥l5 = h(a,b,?)
where

1
h(a,b,t) := a* 4+ b* — 2(ab)*t* — §a2(a2 + b — 2abt).

Hence, to this end, it is enough to show that h(a,b,t) > 0 provided a,b > 0 and 0 < ¢t < 1. For any fixed a
and b, h(a,b,t) achieves the minimum for either t = 0 or ¢t = 1. For ¢t = 0, we have

1 1 1 1 7
e S L2 = Sty Dt s 31
h(a,b,0) =a* +b 59 2ab 2(a 2b) +8b >0 (3.1)

When t =1, we have

1
—a*(a® +b?) — 2(ab)?® + a*b

h(a,b,1) = a* 4+ b* — 5

1
=(a— b)2(§a2 +b% 4+ 2ab) > 0

Combining (3.1) and (3.2), we arrive at the conclusion. 0O
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Now we have enough ingredients to prove Theorem 1.3.

Proof of Theorem 1.3. We assume that x* is a solution to (1.2). Noting exp(if)x™ is also a solution to
(1.2) for any 6 € R, in order to apply Lemma 3.2 in (3.10), we assume that

(x# x0) € R and (x# x0) > 0.
We consider the programming

min || X1 st [JAX) —yl2 <€ rank(X) = 1. (3.3)
XeHnxn
Then a simple observation is that X# is the solution to (3.3) if and only if X# = x# (x#)*.

Set Xo := xox; and H := X# — Xo = x7(x¥)* — xox};. Hence, we have to find an upper bound for
|H||r. Denote Ty = supp(xp). Set 77 as the index set which contains the indices of the ak largest elements
of x% in magnitude, and T5 contains the indices of the next ak largest elements, and so on. For simplicity,
we set To1 := Ty UT, and H .= Hry, 1., where Hg 1 denotes the sub-matrix of H with the row set S and
the column set 7. We claim that

1, 4
- _ 1 4 - at el 2
e < e+ 1 = e < (5 4+ 2 +1) e < S 2, (34)
a +a c— 4\/—% -2 m
which implies the conclusion (1.5). According to Lemma 3.2, we obtain that
# # Vol\H % + % +1 2y/2
min ||c-x7 —x < ||x7 —x < X < .
ceC,je|=1 || 0”2 = || OHQ = || ||F/H 0”2 = 4_\/%‘ — % \/EHXOHZ
We next turn to prove (3.4). The first inequality in (3.4) follows from
|H e < (24 ) 1Al (35)
F=1\a Va £ ’
and the second inequality follows from
— 1 2e
1HlF < —g—o 7= (3.6)
va a
To this end, it is enough to prove (3.5) and (3.6).
Step 1: We first present the proof of (3.5). A simple observation is that
IH=Hlr< > |Hozlr+ > Y IHnglle+ > > |Hezlr
i>2,5>2 i=0,15>2 §=0,1>2
(3.7)
= Y. lHnglle+2 > > |Hr. 1 e
122,j>2 1=0,15>2
We first consider the first term on the right-hand side of (3.7). Note that
2
1
Do MHralle = Y skl lxhll= { Do lxllz | < — Il
i>2,j>2 i>2,5>2 i>2 (3.8)

1 1 1 1, =
= EHHT;,THM < %HHTO,T()Hl < 5||HTO,T0||F < EHH”F'
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Here, the first inequality follows from ||XT Il2 < ||xT li/Vak, for i > 2. The second inequality is based on
|H — Hry 1|1 < ||[Hzy 10 ||1- Indeed, according to || X#||; < ||X0||1, we have

1H — Hry gl = X% = X3 70 < 1ol = 1XF, 7, [ < I1Xo = XZ 71 = [ Hay 1

We next turn to >, > ;5 [[Hr, 7 [| . Re-using ||x§%] ll2 < ||X#_7,_1||1/\/ak, we have, for i € {0,1},

Y Hz zylle =[x ll2 - Y I ll2 < \/——IIXTCII 1% 12 < IHXTH 2%, —oll2- (3.9)

j>2 j>2
The last inequality is based on ||x¥||; < ||Xol|1, which leads to
HX?%«Hl < lIxolls — %% It < lIx% —xolls < VE|xF — xoll2 < VEIxE, — xoll2.

Substituting (3.8) and (3.9) into (3.7), we obtain that

IH=Hlr< > |Hrgllr+ Y. Y [Heplle+ Y > IHnx e

i>2,j>2 i=0,1 j>2 §j=0,1i>2

(3.10)

1 - 2V/2 1 4
< — H < . H
= a|| lr+—= Ja HXTm” HXTm Xoll2 < ( + \/—> I H| F,

where the second inequality is based on HX#O Iz + ||xﬁ1 2 < V2 ||xﬁ01 |l2, and the third inequality follows from
Lemma 3.2.
Step 2: We next prove (3.6). Since

M) 2 < JAXHF) = yll2 + [ AXo) = ]2 < 2,

we have

2—\/6— 2 TIIA( )2 = %IIA( ) = —IIA( )|y~ —IIA(H H)lls. (3.11)

In order to get a lower bound of L|A(H)|1 — 2| A(H — H)||1, we bound 1| A(H)|; from below and
L||A(H — H)||; from above. As rank(H) < 2 and ||H|jo2 < (a + 1)k, we obtam by RIP of A that

1 _ _
—NAH) 1 2 el H ] p- (3.12)
Since H — H can be written as
H - ﬁ = (HTO’Tél + HT517T0) + (HTl,T§1 + HTOCI,Tl) + HTOCI’TOL'17
we have
1 _ 1 1 1
A = H) s < —AAHT 75 + Hrg,m) b+ —AHz 15, + Hrg, )l + AT 16, (3:13)

According to the RIP condition, for ¢ € {0,1}, we have
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1
gzm

1
EHA(HTi,Tgl + Hrg, 1)

Jj=2 j>2
<O (5 6F) e + IxF, (7, ) " lle) = 20 D 11X, llallxE, 12 (3.14)
Jj=>2 j>2
2C
e XO”Q)

where the first inequality follows from

Hr, 1e + Hre, 1, = Z(HTi,Tj + Hr, 1) = Z(X# (X#J)* + X#j (X#)*)
jz2 Jj=2

and the last inequality is obtained as in (3.9). To bound || A(Hzg, g, )[l1, note that

_ #oy\*

HT(fl’T(fl - XT& (ngl)
with |[xF. oo < X7 ll1/(ak). Set 6 := max{|[x}|l1/(ak), [xF. [l1/(ak)}. We assume that & :=
Diag(Ph(x#&)) is the diagonal matrix with diagonal elements being the phase of x#&, ie, ®~ xTr is

a real vector. According to Lemma 3.1, we have

N N
qux;%& :Z)\iui, 0< )\ <1, Z/\ =1,
where u; is ak-sparse, and

laill = 6% il <0,

which leads to

[wll2 < Vil < £/6lIxF |-

If 0 = ||x} ||1/(ak), we have

|| T1|| H T()l HHTl T01

w2 <

< \/||HHTO,T0||1 < \/||HT0,T0||1 < \/||HT0,T0||F < |H||F
- ak - ak - a - a

0= ||X#51 l1/(ak), we have

||X#gl||1”X#§1”1: [ Hrg, 15 11

w2 <

< \/||HHTO,T0||1 < \/||HT0,T0||1 < \/||HT0,T0||F < |H||F
- ak - ak - a - a

Thus we can obtain that
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H
||uZH2§ w? fOI'?::].,...,N. (315)
a

Since

N *
#

_Z)\)\q)u,u +uju;)e- —&—Z)\Q(I)uzu i

i<j
based on the RIP condition, we can obtain that
1
—NAHTg, 75l < DO ll(wa + wpu)) e+ D ONF[lwuj |
i<j i

< D20 izl + ZCVHWHz

< (3.16)
IIHIIF olHlr
<C—— Ai| =
2 -
where the third line follows from (3.15). Now combining (3.14) and (3.16), we obtain that
1 - 1 1 1
AH = H)lly < S AHT 15, + Hrg 1)l + AT 75 + Hrg 2+ A T, 125 [l
2C 2C | H| r
< 2l lallc, ol + 2 e el —xolla + O
_ 3.17
_2vac 0 347
< TH Xy, ll2llxF,, = xollz + ,

4 1 —
<C|—+—-)|H|F-
<o+ 2) Il
The last inequality uses Lemma 3.2. Based on (3.12), (3.17) and (3.11), we obtain that

> LA~ | AGH ~ )]s

1
m
_ 4 1 _ C C ~
> el - € (2 + 5 ) Mle = (e 22 - £) it

According to the condition (1.4), it implies that

5

1= F <

Thus, we arrive at the conclusion (3.6). O
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