Contents lists available at ScienceDirect

## Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

# Letter to the Editor The recovery of complex sparse signals from few phaseless measurements

Yu Xia<sup>a,\*,1</sup>, Zhiqiang Xu<sup>b,c,2</sup>

<sup>a</sup> Department of Mathematics, Hangzhou Normal University, Hangzhou 311121, China
 <sup>b</sup> LSEC, Inst. Comp. Math., Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing, 100091, China
 <sup>c</sup> School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

#### ARTICLE INFO

Article history: Received 25 November 2019 Received in revised form 31 May 2020 Accepted 18 August 2020 Available online 26 August 2020 Communicated by Holger Rauhut

#### ABSTRACT

We study the stable recovery of complex k-sparse signals from as few phaseless measurements as possible. The main result is to show that one can employ  $\ell_1$  minimization to stably recover complex k-sparse signals from  $m \ge O(k \log(n/k))$  complex Gaussian random quadratic measurements with high probability. To do that, we establish that Gaussian random measurements satisfy the restricted isometry property over rank-2 and sparse matrices with high probability. This paper presents the first theoretical estimation of the measurement number for stably recovering complex sparse signals from complex Gaussian quadratic measurements. © 2020 Elsevier Inc. All rights reserved.

#### 1. Introduction

#### 1.1. Sparse phase retrieval

Suppose that  $\mathbf{x}_0 \in \mathbb{F}^n$  is a k-sparse signal, i.e.,  $\|\mathbf{x}_0\|_0 \leq k$ , where  $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ . We are interested in recovering  $\mathbf{x}_0$  from

$$y_j = |\langle \mathbf{a}_j, \mathbf{x}_0 \rangle|^2 + w_j, \quad j = 1, \dots, m,$$

where  $\mathbf{a}_j \in \mathbb{F}^n$  is a measurement vector and  $w_j \in \mathbb{R}$  is the noise. This problem is called *sparse phase retrieval* [2,9,12]. Let  $\mathcal{A} : \mathbb{F}^{n \times n} \to \mathbb{R}^m$  be a linear map which is defined as

$$\mathcal{A}(X) = (\mathbf{a}_1^* X \mathbf{a}_1, \dots, \mathbf{a}_m^* X \mathbf{a}_m),$$

\* Corresponding author.

https://doi.org/10.1016/j.acha.2020.08.001







E-mail addresses: yxia@hznu.edu.cn (Y. Xia), xuzq@lsec.cc.ac.cn (Z. Xu).

<sup>&</sup>lt;sup>1</sup> Yu Xia was supported by NSFC grant (11901143), Zhejiang Provincial Natural Science Foundation (LQ19A010008), Department of Education of Zhejiang Province Science Foundation (Y201840082).

 $<sup>^2</sup>$  Zhiqiang Xu was supported by Beijing Natural Science Foundation (Z180002) and by NSFC grant (11688101).

<sup>1063-5203/© 2020</sup> Elsevier Inc. All rights reserved.

where  $X \in \mathbb{F}^{n \times n}$ ,  $\mathbf{a}_j \in \mathbb{F}^n$ , j = 1, ..., m. By abuse of notation we set

$$\mathcal{A}(\mathbf{x}) := \mathcal{A}(\mathbf{x}\mathbf{x}^*) = (|\langle \mathbf{a}_1, \mathbf{x} \rangle|^2, \dots, |\langle \mathbf{a}_m, \mathbf{x} \rangle|^2),$$

where  $\mathbf{x} \in \mathbb{F}^n$ . We also set

$$\tilde{\mathbf{x}}_0 := \{ c\mathbf{x}_0 : |c| = 1, c \in \mathbb{F} \}$$

The aim of sparse phase retrieval is to recover  $\tilde{\mathbf{x}}_0$  from noisy measurements  $\mathbf{y} = \mathcal{A}(\mathbf{x}_0) + \mathbf{w}$ , with  $\mathbf{y} = (y_1, \ldots, y_m)^T \in \mathbb{R}^m$  and  $\mathbf{w} = (w_1, \ldots, w_m)^T \in \mathbb{R}^m$ . One question in sparse phase retrieval is: how many measurements  $y_j, j = 1, \ldots, m$ , are needed to stably recover  $\tilde{\mathbf{x}}_0$ ? For the case  $\mathbb{F} = \mathbb{R}$ , in [5], Eldar and Mendelson established that  $m = O(k \log(n/k))$  Gaussian random quadratic measurements are enough to stably recover k-sparse signals  $\tilde{\mathbf{x}}_0$ . For the complex case, Iwen, Viswanathan and Wang suggested a two-stage strategy for sparse phase retrieval and show that  $m = O(k \log(n/k))$  measurements can guarantee the stable recovery of  $\tilde{\mathbf{x}}_0$  [7]. However, the strategy in [7] requires the measurement matrix to be written as a product of two random matrices. Hence, it still remains open whether one can stably recover arbitrary complex k-sparse signal  $\tilde{\mathbf{x}}_0$  from  $m = O(k \log(n/k))$  Gaussian random quadratic measurements. One of the aims of this paper is to confirm that  $m = O(k \log(n/k))$  Gaussian random quadratic measurements are enough to guarantee the stable recovery of arbitrary complex k-sparse signal  $\tilde{\mathbf{x}}_0$  from  $m = O(k \log(n/k))$  Gaussian random quadratic measurements. One of the aims of this paper is to confirm that  $m = O(k \log(n/k))$  Gaussian random quadratic measurements are enough to guarantee the stable recovery of arbitrary complex k-sparse signals. In fact, we do so by employing  $\ell_1$  minimization.

#### 1.2. $\ell_1$ minimization

Set  $A := (\mathbf{a}_1, \dots, \mathbf{a}_m)^T \in \mathbb{F}^{m \times n}$ . One classical result in compressed sensing is that one can use  $\ell_1$  minimization to recover k-sparse signals, i.e.,

$$\operatorname*{argmin}_{\mathbf{x}\in\mathbb{F}^n} \{\|\mathbf{x}\|_1 : A\mathbf{x} = A\mathbf{x}_0\} = \mathbf{x}_0,$$

provided that the measurement matrix A meets the RIP condition [4]. Recall that a matrix A satisfies the k-order RIP condition with RIP constant  $\delta_k \in [0, 1)$  if

$$(1 - \delta_k) \|\mathbf{x}\|_2^2 \le \|A\mathbf{x}\|_2^2 \le (1 + \delta_k) \|\mathbf{x}\|_2^2$$

holds for all k-sparse vectors  $\mathbf{x} \in \mathbb{F}^n$ . Using tools from probability theory, one can show that Gaussian random matrices satisfy the k-order RIP with high probability provided  $m = O(k \log(n/k))$  [1].

Naturally, one is interested in employing  $\ell_1$  minimization for sparse phase retrieval. We consider the following model:

$$\underset{\mathbf{x}\in\mathbb{F}^{n}}{\operatorname{argmin}}\{\|\mathbf{x}\|_{1}:|A\mathbf{x}|=|A\mathbf{x}_{0}|\}.$$
(1.1)

Although the constrained conditions in (1.1) are non-convex, the model (1.1) is more amenable to algorithmic recovery. In fact, algorithms have been developed for solving (1.1) [9,15,16]. For the case  $\mathbb{F} = \mathbb{R}$ , the performance of (1.1) was studied in [11,6,13,8]. Particularly, in [11], it was shown that if  $A \in \mathbb{R}^{m \times n}$  is a random Gaussian matrix with  $m = O(k \log(n/k))$ , then

$$\underset{\mathbf{x}\in\mathbb{R}^{n}}{\operatorname{argmin}}\{\|\mathbf{x}\|_{1}:|A\mathbf{x}|=|A\mathbf{x}_{0}|\} = \pm \mathbf{x}_{0}$$

holds with high probability. The methods developed in [11] heavily depend on  $A\mathbf{x}_0$  is a *real* vector and one still does not know the performance of  $\ell_1$  minimization for recovering complex sparse signals. As mentioned

in [11]: "The extension of these results to hold over  $\mathbb{C}$  cannot follow the same line of reasoning". In this paper, we extend the result in [11] to the complex case by employing a new idea on the RIP of quadratic measurements.

#### 1.3. Our contribution

In this paper, we study the performance of  $\ell_1$  minimization for recovering complex sparse signals from phaseless measurements  $\mathbf{y} = \mathcal{A}(\mathbf{x}_0) + \mathbf{w}$ , where  $\|\mathbf{w}\|_2 \leq \epsilon$ . Particularly, we focus on the model

$$\min_{\mathbf{x}\in\mathbb{C}^n} \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \|\mathcal{A}(\mathbf{x}) - \mathbf{y}\|_2 \le \epsilon.$$
(1.2)

Although the constrained conditions in (1.2) are non-convex, Many numerical experiments were made to demonstrate empirical success of the proposed algorithms. For example, in [9], Moravec, Romberg, and Baraniuk proposed an iterative projection algorithm to solve the noiseless version of (1.2). Furthermore, the ADM algorithm for solving (1.2) was introduced in [16]. However, there are very few results about the theoretical performance of the model.

Our main idea is to lift (1.2) to recover rank-one and sparse matrices, i.e.,

$$\min_{X \in \mathbb{H}^{n \times n}} \|X\|_1 \quad \text{s.t.} \quad \|\mathcal{A}(X) - \mathbf{y}\|_2 \le \epsilon, \ \operatorname{rank}(X) = 1.$$

Throughout this paper, we use  $\mathbb{H}^{n \times n}$  to denote the set of Hermitian  $n \times n$ -matrices. Moreover, we require that  $\mathcal{A}$  satisfies the following restricted isometry property over low-rank and sparse matrices:

**Definition 1.1.** We say that the map  $\mathcal{A} : \mathbb{H}^{n \times n} \to \mathbb{R}^m$  satisfies the restricted isometry property of order (r, k) if there exist positive constants c and C such that the inequality

$$c\|X\|_F \le \frac{1}{m}\|\mathcal{A}(X)\|_1 \le C\|X\|_F$$
 (1.3)

holds for all  $X \in \mathbb{H}^{n \times n}$  with rank $(X) \leq r$  and  $||X||_{0,2} \leq k$ .

Throughout this paper, we use  $||X||_{0,2}$  to denote the number of non-zero rows in X. Since X is Hermitian, we have  $||X||_{0,2} = ||X^*||_{0,2}$ . We next show that a Gaussian random map  $\mathcal{A}$  satisfies the RIP of order (2, k)with high probability provided  $m \gtrsim k \log(n/k)$ . Here we use  $A \gtrsim B$  to denote  $A \geq C_0 B$ , where  $C_0 \in \mathbb{R}_+$  is an absolute constant. The notation  $\lesssim$  can be defined similarly.

**Theorem 1.2.** Assume that the linear measurement  $\mathcal{A}(\cdot)$  is defined as

$$\mathcal{A}(X) = (\mathbf{a}_1^* X \mathbf{a}_1, \dots, \mathbf{a}_m^* X \mathbf{a}_m),$$

with  $\mathbf{a}_j$  independently taken as complex Gaussian random vectors, i.e.,  $\mathbf{a}_j \sim \mathcal{N}(0, \frac{1}{2}\mathbf{I}_{n \times n}) + \mathcal{N}(0, \frac{1}{2}\mathbf{I}_{n \times n})i$ . If

$$m \gtrsim k \log(n/k),$$

with probability at least  $1 - 2\exp(-c_0m)$ , A satisfies the restricted isometry property of order (2, k), i.e.

$$0.12||X||_F \le \frac{1}{m} ||\mathcal{A}(X)||_1 \le 2.45 ||X||_F,$$

for all  $X \in \mathbb{H}^{n \times n}$  with  $rank(X) \le 2$  and  $||X||_{0,2} \le k$  (also  $||X^*||_{0,2} \le k$ ).

In the next theorem, we show that (1.2) can robustly recover complex k-sparse signals from phaseless measurements provided  $\mathcal{A}$  satisfies the restricted isometry property of order (2, 2ak) with a > 0 being suitably chosen.

**Theorem 1.3.** Assume that  $\mathcal{A}(\cdot)$  satisfy the RIP condition of order (2, 2ak) with RIP constant c, C > 0 satisfying

$$c - \frac{4C}{\sqrt{a}} - \frac{C}{a} > 0. \tag{1.4}$$

For any k sparse signals  $\mathbf{x}_0 \in \mathbb{C}^n$ , the solution to (1.2)  $\mathbf{x}^{\#}$  satisfies

$$\|\mathbf{x}^{\#}(\mathbf{x}^{\#})^{*} - \mathbf{x}_{0}\mathbf{x}_{0}^{*}\|_{F} \le C_{1}\frac{2\epsilon}{\sqrt{m}},\tag{1.5}$$

where

$$C_1 = \frac{\frac{1}{a} + \frac{4}{\sqrt{a}} + 1}{c - \frac{4C}{\sqrt{a}} - \frac{C}{a}}$$

Furthermore, we have

$$\min_{c \in \mathbb{C}, |c|=1} \| c \cdot \mathbf{x}^{\#} - \mathbf{x}_0 \|_2 \le 2\sqrt{2}C_1 \frac{\epsilon}{\sqrt{m} \|\mathbf{x}_0\|_2}.$$
(1.6)

Remark 1.4. According to Lemma 3.2, it obtains that

$$\min_{c \in \mathbb{C}, |c|=1} \|c \cdot \mathbf{x}^{\#} - \mathbf{x}_0\|_2 \le \|\mathbf{x}^{\#} - \mathbf{x}_0\|_2 \le \sqrt{2} \frac{\|\mathbf{x}^{\#}(\mathbf{x}^{\#})^* - \mathbf{x}_0\mathbf{x}_0^*\|_F}{\|\mathbf{x}_0\|_2} \lesssim \frac{\epsilon}{\sqrt{m}\|\mathbf{x}_0\|_2}.$$

On the other hand, we have

$$\min_{c \in \mathbb{C}, |c|=1} \|c \cdot \mathbf{x}^{\#} - \mathbf{x}_0\|_2 \le \|\mathbf{x}^{\#} - \mathbf{x}_0\|_2 \le \|\mathbf{x}^{\#}\|_2 + \|\mathbf{x}_0\|_2 \le \|\mathbf{x}^{\#}\|_1 + \|\mathbf{x}_0\|_2 \le \|\mathbf{x}_0\|_1 + \|\mathbf{x}_0\|_2.$$

Hence, we obtain that

$$\min_{c \in \mathbb{C}, |c|=1} \| c \cdot \mathbf{x}^{\#} - \mathbf{x}_0 \|_2 \le \min \left\{ 2\sqrt{2}C_1 \frac{\epsilon}{\sqrt{m} \|\mathbf{x}_0\|_2}, \|\mathbf{x}_0\|_2 + \|\mathbf{x}_0\|_1 \right\}.$$
(1.7)

For the case where  $\|\mathbf{x}_0\|_2 + \|\mathbf{x}_0\|_1 \le 2\sqrt{2}C_1 \frac{\epsilon}{\sqrt{m}\|\mathbf{x}_0\|_2}$ , we obtain that

$$2\sqrt{2}C_1 \frac{\epsilon}{\sqrt{m}} \ge \|\mathbf{x}_0\|_2^2 + \|\mathbf{x}_0\|_2 \|\mathbf{x}_0\|_1$$
$$\ge \|\mathbf{x}_0\|_1^2/k + \|\mathbf{x}_0\|_1^2/\sqrt{k} = \|\mathbf{x}_0\|_1^2(1/k + 1/\sqrt{k}),$$

which implies  $\|\mathbf{x}_0\|_1 \leq \sqrt{2\sqrt{2}C_1} \cdot \sqrt{\epsilon} \cdot (k/m)^{1/4}$ . Noting that

$$\|\mathbf{x}_0\|_2 + \|\mathbf{x}_0\|_1 \le 2\|\mathbf{x}_0\|_1 \le 2\sqrt{2\sqrt{2}C_1} \cdot \sqrt{\epsilon} \cdot \left(\frac{k}{m}\right)^{1/4},$$

we obtain that

$$\min_{c \in \mathbb{C}, |c|=1} \|c \cdot \mathbf{x}^{\#} - \mathbf{x}_0\|_2 \lesssim \min\left\{\frac{\epsilon}{\sqrt{m} \|\mathbf{x}_0\|_2}, \sqrt{\epsilon} \cdot \left(\frac{k}{m}\right)^{1/4}\right\}.$$

**Remark 1.5.** For  $\|\mathbf{x}_0\|_2 \geq 1$ , the error bound  $\min_{c \in \mathbb{C}, |c|=1} \|c \cdot \mathbf{x}^{\#} - \mathbf{x}_0\|_2 \lesssim \frac{\epsilon}{\sqrt{m}}$  presented in Theorem 1.3 is sharp in the sense that there exists  $\mathbf{x}_0 \in \mathbb{C}^n$  and  $\mathbf{w} \in \mathbb{R}^m$  so that  $\min_{c \in \mathbb{C}, |c|=1} \|c \cdot \mathbf{x}^{\#} - \mathbf{x}_0\|_2 \gtrsim \epsilon/\sqrt{m}$  holds with a positive constant probability. Indeed, take  $\mathbf{x}_0 = (1, 0, ..., 0)^T \in \mathbb{R}^n$  and  $\mathbf{y} = \mathcal{A}(\mathbf{x}_0) + \mathbf{w}$  with  $\mathbf{w} = (1, ..., 1) \in \mathbb{R}^m$ . Set  $\epsilon = \sqrt{10m}$ . Assume that  $\mathbf{x}^{\#}$  is a solution to

$$\min_{\mathbf{x}\in\mathbb{C}^n} \|\mathbf{x}\|_1, \quad \text{s.t.} \quad \|\mathcal{A}(\mathbf{x}) - \mathbf{y}\|_2 \le \sqrt{10m}.$$

We claim that  $\mathbf{x}^{\#} = \mathbf{0}$  with probability at least 1/2, which implies that

$$\|\mathbf{x}^{\#}(\mathbf{x}^{\#})^* - \mathbf{x}_0\mathbf{x}_0^*\|_F = 1 \gtrsim \frac{\epsilon}{\sqrt{m}}$$

holds with probability at least 1/2. To prove  $\mathbf{x}^{\#} = \mathbf{0}$  with probability at least 1/2, it is enough to show that  $\mathbf{P}\{\|\mathcal{A}(\mathbf{0}) - \mathbf{y}\|_2^2 \le 10m\} \ge 1/2$ . Note that

$$\mathbb{E}(\|\mathcal{A}(\mathbf{0}) - \mathbf{y}\|_{2}^{2}) = \mathbb{E}\left(\sum_{j=1}^{m} (|\mathbf{a}_{j,1}|^{2} + 1)^{2}\right) = \mathbb{E}\left(\sum_{j=1}^{m} (|\mathbf{a}_{j,1}|^{4} + 2|\mathbf{a}_{j,1}|^{2} + 1)\right) = 5m$$

According to the Markov inequality, we obtain that

$$\mathbb{P}\{\|\mathcal{A}(\mathbf{0}) - \mathbf{y}\|_{2}^{2} \le 10m\} \ge 1 - \frac{5m}{10m} = \frac{1}{2}$$

Hence  $\mathbf{x}^{\#} = 0$  with probability at least 1/2.

According to Theorem 1.2, if  $\mathbf{a}_j$ ,  $j = 1, \ldots, m$  are complex Gaussian random vectors, then  $\mathcal{A}$  satisfies RIP of order (2, 2ak) with constants c = 0.12 and C = 2.45 with high probability provided  $m \gtrsim 2ak \log(n/2ak)$ . To guarantee (1.4) holds, it is enough to require  $a > (8C/c)^2$ . Therefore, combining Theorem 1.2 and Theorem 1.3 with  $\epsilon = 0$ , we can obtain the following corollary:

**Corollary 1.6.** Suppose that  $\mathbf{x}_0 \in \mathbb{C}^n$  is a k-sparse signal. Assume that  $A = (\mathbf{a}_1, \dots, \mathbf{a}_m)^T$  where  $\mathbf{a}_j, j = 1, \dots, m$  is Gaussian random vectors, i.e.,  $\mathbf{a}_j \sim \mathcal{N}(0, \frac{1}{2}\mathbf{I}_{n \times n}) + \mathcal{N}(0, \frac{1}{2}\mathbf{I}_{n \times n})i$ . If  $m \gtrsim k \log(n/k)$ , then

$$\underset{\mathbf{x}\in\mathbb{C}^n}{\operatorname{argmin}}\{\|\mathbf{x}\|_1:|A\mathbf{x}|=|A\mathbf{x}_0|\} = \tilde{\mathbf{x}}_0$$

holds with probability at least  $1 - 2 \exp(-c_0 m)$ . Here  $c_0 > 0$  is an absolute constant.

#### 2. Proof of Theorem 1.2

We first introduce a Bernstein-type inequality which plays a key role in our proof.

**Lemma 2.1.** [10] Let  $\xi_1, \ldots, \xi_m$  be i.i.d. sub-exponential random variables and  $K := \max_j \|\xi_j\|_{\psi_1}$ . Then for every  $\epsilon > 0$ , we have

$$\mathbb{P}\left(\left|\frac{1}{m}\sum_{j=1}^{m}\xi_{j}-\frac{1}{m}\mathbb{E}\left(\sum_{j=1}^{m}\xi_{j}\right)\right|\geq\epsilon\right)\leq2\exp\left(-c_{0}m\min\left(\frac{\epsilon^{2}}{K^{2}},\frac{\epsilon}{K}\right)\right)$$

where  $c_0 > 0$  is an absolute constant.

We next introduce some key lemmas needed to prove Theorem 1.2, and then present the proof of Theorem 1.2.

**Lemma 2.2.** Assume  $z_1, z_2, z_3$  and  $z_4$  are independently drawn from  $\mathcal{N}(0, 1)$ . If  $t \in [-1, 0]$ , we have

$$\mathbb{E}|z_1^2 + z_2^2 + tz_3^2 + tz_4^2| = 2\left(\frac{1+t^2}{1-t}\right).$$

**Proof.** When t = 0, we have  $\mathbb{E}|z_1^2 + z_2^2 + tz_3^2 + tz_4^2| = \mathbb{E}|z_1^2 + z_2^2| = 2$ . If  $t \in [-1, 0]$ , taking coordinates transformation as  $z_1 = \rho_1 \cos \theta$ ,  $z_2 = \rho_1 \sin \theta$ ,  $z_3 = \rho_2 \cos \phi$ , and  $z_4 = \rho_2 \sin \phi$ , we obtain that

$$\begin{split} \mathbb{E}|z_1^2 + z_2^2 + tz_3^2 + tz_4^2| &= \left(\frac{1}{2\pi}\right)^2 \int_{\mathbb{R}^4} |z_1^2 + z_2^2 + tz_3^2 + tz_4^2| \exp\left(-\frac{z_1^2 + z_2^2 + z_3^2 + z_4^2}{2}\right) dz_1 dz_2 dz_3 dz_4 \\ &= \left(\frac{1}{2\pi}\right)^2 \int_0^{2\pi} d\theta \int_0^{2\pi} d\phi \int_0^{\infty} \int_0^{\infty} \rho_1 \rho_2 |\rho_1^2 + t\rho_2^2| \exp\left(-\frac{\rho_1^2 + \rho_2^2}{2}\right) d\rho_1 d\rho_2 \\ &= \int_0^{\infty} \int_0^{\infty} \rho_1 \rho_2 |\rho_1^2 + t\rho_2^2| \exp\left(-\frac{\rho_1^2 + \rho_2^2}{2}\right) d\rho_1 d\rho_2 \\ &= \int_{\rho_1 > \sqrt{-t}\rho_2} \rho_1 \rho_2 (\rho_1^2 + t\rho_2^2) \exp\left(-\frac{\rho_1^2 + \rho_2^2}{2}\right) d\rho_1 d\rho_2 \\ &+ \int_{\rho_1 \le \sqrt{-t}\rho_2} \rho_1 \rho_2 (-t\rho_2^2 - \rho_1^2) \exp\left(-\frac{\rho_1^2 + \rho_2^2}{2}\right) d\rho_1 d\rho_2 \\ &= \frac{2}{1-t} + \frac{2t^2}{1-t} = \frac{2(1+t^2)}{1-t}. \end{split}$$

Here, we evaluate the last integrals as follows:

$$\int_{\rho_1 > \sqrt{-t}\rho_2} \rho_1 \rho_2 \left(\rho_1^2 + t\rho_2^2\right) \exp\left(-\frac{\rho_1^2 + \rho_2^2}{2}\right) d\rho_1 d\rho_2$$

$$= \int_0^\infty \rho_2 \exp\left(-\frac{\rho_2^2}{2}\right) d\rho_2 \int_{\sqrt{-t}\rho_2}^\infty \rho_1^3 \exp\left(-\frac{\rho_1^2}{2}\right) d\rho_1 + t \int_0^\infty \rho_2^3 \exp\left(-\frac{\rho_2^2}{2}\right) d\rho_2 \int_{\sqrt{-t}\rho_2}^\infty \rho_1 \exp\left(-\frac{\rho_1^2}{2}\right) d\rho_1$$

$$= \int_0^\infty \rho_2 \exp\left(-\frac{\rho_2^2}{2}\right) \left(-t\rho_2^2 \exp\left(\frac{t\rho_2^2}{2}\right) + 2\exp\left(\frac{t\rho_2^2}{2}\right)\right) d\rho_2 + t \int_0^\infty \rho_2^3 \exp\left(-\frac{\rho_2^2}{2}\right) \exp\left(\frac{t\rho_2^2}{2}\right) d\rho_2$$

$$= 2\int_0^\infty \rho_2 \exp\left(-\frac{(1-t)\rho_2^2}{2}\right) d\rho_2 = \frac{2}{1-t}.$$

We can use the similar method to obtain

$$\int_{\rho_1 \le \sqrt{-t}\rho_2} \rho_1 \rho_2 \left( -t\rho_2^2 - \rho_1^2 \right) \exp\left( -\frac{\rho_1^2 + \rho_2^2}{2} \right) d\rho_1 d\rho_2 = \frac{2t^2}{1-t}. \quad \Box$$

### Lemma 2.3. Set

$$\mathcal{X} := \{ X \in \mathbb{H}^{n \times n} \mid \|X\|_F = 1, \ rank(X) \le 2, \ \|X\|_{0,2} \le k \}$$

which is equipped with Frobenius norm. The covering number of  $\mathcal{X}$  at scale  $\epsilon > 0$  is less than or equal to  $\left(\frac{9\sqrt{2}en}{\epsilon k}\right)^{4k+2}$ .

**Proof.** Note that

$$\mathcal{X} = \{ X \in \mathbb{H}^{n \times n} : X = U \Sigma U^*, \ \Sigma \in \Lambda, \ U \in \mathcal{U} \},\$$

where

$$\Lambda = \{ \Sigma \in \mathbb{R}^{2 \times 2} : \Sigma = \operatorname{diag}(\lambda_1, \lambda_2), \ \lambda_1^2 + \lambda_2^2 = 1 \}$$

and

$$\mathcal{U} = \{ U \in \mathbb{C}^{n \times 2} : U^* U = I, \| U \|_{0,2} \le k \} = \bigcup_{\#T=k} \mathcal{U}_T.$$

Here  $T \subset \{1, \ldots, n\}$ , and

$$\mathcal{U}_T := \{ U \in \mathbb{C}^{n \times 2} : U^* U = I, U = U_{T,:} \},\$$

where  $U_{T,:} \subset \mathbb{C}^{n \times 2}$  is the matrix obtained by keeping the rows of U indexed by T and setting all other rows to zero. Note that  $||U||_F = \sqrt{2}$  for all  $U \in \mathcal{U}_T$  and that the real dimension of  $\mathcal{U}_T$  is at most 4k for any fixed support T with #T = k. We use  $Q_T$  to denote an  $\epsilon/3$ -net of  $\mathcal{U}_T$  with  $\#Q_T \leq (9\sqrt{2}/\epsilon)^{4k}$ . Then  $Q_{\epsilon} := \bigcup_{\#T=k} Q_T$  is an  $\epsilon/3$ -net of  $\mathcal{U}$  with

$$\#Q_{\epsilon} \le \left(\frac{en}{k}\right)^k \left(\frac{9\sqrt{2}}{\epsilon}\right)^{4k} \le \left(\frac{9\sqrt{2}en}{\epsilon k}\right)^{4k}.$$

We use  $\Lambda_{\epsilon}$  to denote an  $\epsilon/3$ -net of  $\Lambda$  with  $\#\Lambda_{\epsilon} \leq (9/\epsilon)^2$ . Set

$$\mathcal{N}_{\epsilon} := \{ U\Sigma U^* \mid U \in Q_{\epsilon}, \text{ and } \Sigma \in \Lambda_{\epsilon} \}.$$

Then for any  $X = U\Sigma U^* \in \mathcal{X}$ , there exists  $U_0\Sigma_0 U_0^* \in \mathcal{N}_{\epsilon}$  with  $||U - U_0||_F \leq \epsilon/3$  and  $||\Sigma - \Sigma_0||_F \leq \epsilon/3$ . So, we have

$$\begin{aligned} \|U\Sigma U^* - U_0 \Sigma_0 U_0^*\|_F &\leq \|U\Sigma U^* - U_0 \Sigma U^*\|_F + \|U_0 \Sigma U^* - U_0 \Sigma_0 U^*\|_F + \|U_0 \Sigma_0 U^* - U_0 \Sigma_0 U_0^*\|_F \\ &\leq \|U - U_0\|_F \|\Sigma U^*\| + \|U_0\| \|\Sigma - \Sigma_0\|_F \|U^*\| + \|U_0 \Sigma_0\| \|U^* - U_0\|_F \\ &\leq \epsilon. \end{aligned}$$

Therefore,  $\mathcal{N}_{\epsilon}$  is an  $\epsilon$ -net of  $\mathcal{X}$  with

$$\#\mathcal{N}_{\epsilon} \le \#\mathcal{Q}_{\epsilon} \cdot \#\Lambda_{\epsilon} \le \left(\frac{9\sqrt{2}en}{\epsilon k}\right)^{4k} (9/\epsilon)^2 \le \left(\frac{9\sqrt{2}en}{\epsilon k}\right)^{4k+2}$$

provided that  $n \ge k$  and  $\epsilon \le 1$ .  $\Box$ 

We now have the necessary ingredients to prove Theorem 1.2.

**Proof of Theorem 1.2.** Without loss of generality, we assume that  $||X||_F = 1$ . We first consider  $\mathbb{E}||\mathcal{A}(X)||_1$ . Noting that rank $(X) \leq 2$  and  $||X||_F = 1$ , we can write X in the form of

$$X = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^* + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^*,$$

where  $\lambda_1, \lambda_2 \in \mathbb{R}$  satisfying  $\lambda_1^2 + \lambda_2^2 = 1$  and  $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{C}^n$  satisfying  $\|\mathbf{u}_1\|_2 = \|\mathbf{u}_2\|_2 = 1, \langle \mathbf{u}_1, \mathbf{u}_2 \rangle = 0$ . Therefore, we obtain that

$$\mathbf{a}_k^* X \mathbf{a}_k = \lambda_1 |\mathbf{u}_1^* \mathbf{a}_k|^2 + \lambda_2 |\mathbf{u}_2^* \mathbf{a}_k|^2,$$

where  $\mathbf{u}_1^* \mathbf{a}_k$  and  $\mathbf{u}_2^* \mathbf{a}_k$  are independently drawn from  $\mathcal{N}(0, \frac{1}{2}) + \mathcal{N}(0, \frac{1}{2})i$ . Then

$$\frac{1}{m} \|\mathcal{A}(X)\|_1 = \frac{1}{m} \sum_{j=1}^m \left|\lambda_1 |\mathbf{u}_1^* \mathbf{a}_j|^2 + \lambda_2 |\mathbf{u}_2^* \mathbf{a}_j|^2\right| = \frac{1}{m} \sum_{j=1}^m \xi_j,$$
(2.1)

where the  $\xi_j$  are independent copies of the following random variable

$$\xi = \left| \lambda_1 z_1^2 + \lambda_1 z_2^2 + \lambda_2 z_3^2 + \lambda_2 z_4^2 \right|$$

where  $z_1, z_2, z_3, z_4 \sim \mathcal{N}(0, \frac{1}{2})$  are independent. Without loss of generality, we assume that  $|\lambda_1| \geq |\lambda_2|$  and hence  $|\lambda_1| \in [\frac{\sqrt{2}}{2}, 1]$ . Note that  $\xi$  can also be rewritten as

$$\xi = |\lambda_1| \left| z_1^2 + z_2^2 + t z_3^2 + t z_4^2 \right|$$
(2.2)

with  $t := \lambda_2/\lambda_1$  satisfying  $|t| \le 1$ . Since  $\frac{1}{m}\mathbb{E}||\mathcal{A}(X)||_1 = \mathbb{E}(\xi)$ , we first focus on  $\mathbb{E}(\xi)$ . According to (2.2), we have

$$\mathbb{E}(\xi) \le |\lambda_1| \mathbb{E}(z_1^2 + z_2^2 + z_3^2 + z_4^2) \le 2,$$
(2.3)

as  $\mathbb{E}(z_j^2) = \frac{1}{2}$  for j = 1, ..., 4. On the other hand, when  $t \ge 0$ , we obtain that

$$\mathbb{E}(\xi) \ge |\lambda_1| \mathbb{E}(z_1^2 + z_2^2) \ge \frac{\sqrt{2}}{2}.$$
(2.4)

For  $t \in [-1, 0]$ , Lemma 2.2 (note the missing factor two by the slightly different variances of  $z_i$ ) shows that

$$\mathbb{E}(\xi) = |\lambda_1| \left(\frac{1+t^2}{1-t}\right) \ge 0.57.$$
(2.5)

Combining (2.3), (2.4) and (2.5), we obtain that

$$0.57 \leq \mathbb{E}(\xi) \leq 2.$$

Note that  $\xi$  is a sub-exponential variable with  $\|\xi\|_{\psi_1} \leq \sum_{i=1}^4 \|z_i^2\|_{\psi_1} \leq \tilde{c}$ , where  $\|\cdot\|_{\psi_1} := \sup_{p\geq 1} p^{-1}(\mathbb{E}|\cdot|^p)^{1/p}$  denotes the sub-exponential norm. We set

$$\mathcal{X} := \{ X \in \mathbb{H}^{n \times n} : \|X\|_F = 1, \text{ rank}(X) \le 2, \|X\|_{0,2} \le k \},\$$

and use  $\mathcal{N}_{\epsilon}$  to denote an  $\epsilon$ -net of  $\mathcal{X}$  with respect to the Frobenius norm  $\|\cdot\|_{F}$ , i.e. for any  $X \in \mathcal{X}$ , there exists  $X_{0} \in \mathcal{N}_{\epsilon}$  such that  $\|X - X_{0}\|_{F} \leq \epsilon$ . Based on Lemma 2.1, equality (2.1) and a union bound, we obtain that

$$0.57 - \epsilon_0 \leq \frac{1}{m} \|\mathcal{A}(X_0)\|_1 \leq 2 + \epsilon_0, \text{ for all } X_0 \in \mathcal{N}_{\epsilon}$$

$$(2.6)$$

holds with probability at least  $1 - 2 \cdot \# \mathcal{N}_{\epsilon} \cdot \exp(-\frac{c_0}{16}m\epsilon_0^2)$ .

Note that  $\mathcal{A}$  is continuous at  $X \in \mathcal{X}$  and  $\mathcal{X}$  is a compact set. We can set

$$U_{\mathcal{A}} := \max_{X \in \mathcal{X}} \frac{1}{m} \|\mathcal{A}(X)\|_1.$$

For any  $X \in \mathcal{X}$ , there exists  $X_0 \in \mathcal{N}_{\epsilon}$  such that  $||X - X_0||_F \leq \epsilon$  and  $||X - X_0||_{0,2} \leq k$ . Without loss of generality, assume that  $\operatorname{supp}(X - X_0) \subset [1:k] \times [1:k]$  where  $[1:k] := [1,k] \cap \mathbb{Z}$ . Note that  $\operatorname{rank}(X - X_0) \leq 4$ . We can use the eigenvalue decomposition to obtain that  $(X - X_0)_{[1:k] \times [1:k]} = U\Sigma U^*$  with  $U \in \mathbb{C}^{k \times 4}$ , and  $\Sigma = \operatorname{diag}(\lambda_1, \ldots, \lambda_4)$ . Take  $\Sigma_1 = \operatorname{diag}(\lambda_1, \lambda_2, 0, 0)$  and  $\Sigma_2 = \operatorname{diag}(0, 0, \lambda_3, \lambda_4)$ . Then  $X - X_0 = X_1 + X_2$  where  $X_1 = \begin{bmatrix} U\Sigma_1 U^*, & \mathbf{0} \\ \mathbf{0}, & \mathbf{0} \end{bmatrix} \in \mathbb{H}^{n \times n}$  and  $X_2 = \begin{bmatrix} U\Sigma_2 U^*, & \mathbf{0} \\ \mathbf{0}, & \mathbf{0} \end{bmatrix} \in \mathbb{H}^{n \times n}$ . If  $X_1 = \mathbf{0}$  or  $X_2 = \mathbf{0}$ , we have  $\operatorname{rank}(X - X_0) \leq 2$ , and

$$\frac{1}{m} \|\mathcal{A}(X - X_0)\|_1 \le U_{\mathcal{A}} \epsilon.$$

Otherwise,  $\frac{X_1}{\|X_1\|_F}, \frac{X_2}{\|X_2\|_F} \in \mathcal{X}$  and  $\langle X_1, X_2 \rangle = \langle \Sigma_1, \Sigma_2 \rangle = 0$ . Therefore, we can obtain that

$$\frac{1}{m} \|\mathcal{A}(X - X_0)\|_1 = \frac{1}{m} \|\mathcal{A}(X_1 + X_2)\|_1 \le \frac{1}{m} \|\mathcal{A}(X_1)\|_1 + \frac{1}{m} \|\mathcal{A}(X_2)\|_1$$
$$\le U_{\mathcal{A}} \|X_1\|_F + U_{\mathcal{A}} \|X_2\|_F \le \sqrt{2} U_{\mathcal{A}} \|X_1 + X_2\|_F \le \sqrt{2} U_{\mathcal{A}} \epsilon_1$$

Thus

$$\frac{1}{m} \|\mathcal{A}(X)\|_{1} \leq \frac{1}{m} \|\mathcal{A}(X_{0})\|_{1} + \frac{1}{m} \|\mathcal{A}(X - X_{0})\|_{1} \leq 2 + \epsilon_{0} + \sqrt{2}U_{\mathcal{A}}\epsilon.$$
(2.7)

According to the definition of  $U_{\mathcal{A}}$ , (2.7) implies  $U_{\mathcal{A}} \leq 2 + \epsilon_0 + \sqrt{2}U_{\mathcal{A}}\epsilon$  and hence which implies that

$$U_{\mathcal{A}} \le \frac{2+\epsilon_0}{1-\sqrt{2}\epsilon}.$$

We also have

$$\frac{1}{m} \|\mathcal{A}(X)\|_1 \ge \frac{1}{m} \|\mathcal{A}(X_0)\|_1 - \frac{1}{m} \|\mathcal{A}(X - X_0)\|_1 \ge 0.57 - \epsilon_0 - \sqrt{2}U_{\mathcal{A}}\epsilon \ge 0.57 - \epsilon_0 - \sqrt{2}\frac{2 + \epsilon_0}{1 - \sqrt{2\epsilon}}\epsilon.$$

Hence, we obtain that the following holds with probability at least  $1 - 2 \cdot \# \mathcal{N}_{\epsilon} \cdot \exp(-\frac{c_0}{16}m\epsilon_0^2)$ 

$$\left(0.57 - \epsilon_0 - \sqrt{2}\frac{2 + \epsilon_0}{1 - \sqrt{2}\epsilon}\epsilon\right) \|X\|_F \le \frac{1}{m} \|\mathcal{A}(X)\|_1 \le \left(\frac{2 + \epsilon_0}{1 - \sqrt{2}\epsilon}\right) \|X\|_F, \text{ for all } X \in \mathcal{X}.$$

Taking  $\epsilon = \epsilon_0 = 0.1$ , according to Lemma 2.3, we obtain  $\#\mathcal{N}_{\epsilon} \leq \left(\frac{90\sqrt{2}en}{k}\right)^{4k+2}$ . Thus when  $m \geq O(k \log(en/k))$ , we obtain that

$$0.12 \|X\|_F \le \frac{1}{m} \|\mathcal{A}(X)\|_1 \le 2.45 \|X\|_F$$
, for all  $X \in \mathcal{X}$ 

holds with probability at least  $1 - 2\exp(-cm)$ .  $\Box$ 

#### 3. Proof of Theorem 1.3

In the following, we will use a technical tool based on results in [3,14] which provides convex k-sparse decompositions of certain signals in space.

**Lemma 3.1.** [3,14] Suppose that  $\mathbf{v} \in \mathbb{R}^p$  satisfying  $\|\mathbf{v}\|_{\infty} \leq \theta$ ,  $\|\mathbf{v}\|_1 \leq s\theta$  where  $\theta > 0$  and  $s \in \mathbb{Z}_+$ . Then we have

$$\mathbf{v} = \sum_{i=1}^{N} \lambda_i \mathbf{u}_i, \qquad 0 \le \lambda_i \le 1, \qquad \sum_{i=1}^{N} \lambda_i = 1,$$

where  $\mathbf{u}_i$  is s-sparse with  $(supp(\mathbf{u}_i)) \subset supp(\mathbf{v})$ , and

$$\|\mathbf{u}_i\|_1 = \|\mathbf{v}\|_1, \qquad \|\mathbf{u}_i\|_{\infty} \le \theta.$$

We also need the following lemma:

**Lemma 3.2.** If  $\mathbf{x}, \mathbf{y} \in \mathbb{C}^d$ , and  $\langle \mathbf{x}, \mathbf{y} \rangle \geq 0$ , then

$$\|\mathbf{x}\mathbf{x}^* - \mathbf{y}\mathbf{y}^*\|_F^2 \ge \frac{1}{2}\|\mathbf{x}\|_2^2 \|\mathbf{x} - \mathbf{y}\|_2^2$$

Similarly, we have

$$\|\mathbf{x}\mathbf{x}^* - \mathbf{y}\mathbf{y}^*\|_F^2 \ge \frac{1}{2}\|\mathbf{y}\|_2^2\|\mathbf{x} - \mathbf{y}\|_2^2$$

**Proof.** We set  $a := \|\mathbf{x}\|_2$ ,  $b := \|\mathbf{y}\|_2$  and  $t := \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}$ . A simple calculation shows that

$$\|\mathbf{x}\mathbf{x}^* - \mathbf{y}\mathbf{y}^*\|_F^2 - \frac{1}{2}\|\mathbf{x}\|_2^2 \|\mathbf{x} - \mathbf{y}\|_2^2 = h(a, b, t)$$

where

$$h(a,b,t) := a^4 + b^4 - 2(ab)^2 t^2 - \frac{1}{2}a^2(a^2 + b^2 - 2abt).$$

Hence, to this end, it is enough to show that  $h(a, b, t) \ge 0$  provided  $a, b \ge 0$  and  $0 \le t \le 1$ . For any fixed a and b, h(a, b, t) achieves the minimum for either t = 0 or t = 1. For t = 0, we have

$$h(a,b,0) = a^4 + b^4 - \frac{1}{2}a^4 - \frac{1}{2}a^2b^2 = \frac{1}{2}(a^2 - \frac{1}{2}b^2)^2 + \frac{7}{8}b^4 \ge 0.$$
(3.1)

When t = 1, we have

$$h(a, b, 1) = a^{4} + b^{4} - \frac{1}{2}a^{2}(a^{2} + b^{2}) - 2(ab)^{2} + a^{3}b$$
  
=  $(a - b)^{2}(\frac{1}{2}a^{2} + b^{2} + 2ab) \ge 0$  (3.2)

Combining (3.1) and (3.2), we arrive at the conclusion.  $\Box$ 

Now we have enough ingredients to prove Theorem 1.3.

**Proof of Theorem 1.3.** We assume that  $\mathbf{x}^{\#}$  is a solution to (1.2). Noting  $\exp(i\theta)\mathbf{x}^{\#}$  is also a solution to (1.2) for any  $\theta \in \mathbb{R}$ , in order to apply Lemma 3.2 in (3.10), we assume that

$$\langle \mathbf{x}^{\#}, \mathbf{x}_0 \rangle \in \mathbb{R}$$
 and  $\langle \mathbf{x}^{\#}, \mathbf{x}_0 \rangle \ge 0$ 

We consider the programming

$$\min_{X \in \mathbb{H}^{n \times n}} \|X\|_1 \quad s.t. \quad \|\mathcal{A}(X) - \mathbf{y}\|_2 \le \epsilon, \ \operatorname{rank}(X) = 1.$$
(3.3)

Then a simple observation is that  $X^{\#}$  is the solution to (3.3) if and only if  $X^{\#} = \mathbf{x}^{\#}(\mathbf{x}^{\#})^*$ .

Set  $X_0 := \mathbf{x}_0 \mathbf{x}_0^*$  and  $H := X^{\#} - X_0 = \mathbf{x}^{\#} (\mathbf{x}^{\#})^* - \mathbf{x}_0 \mathbf{x}_0^*$ . Hence, we have to find an upper bound for  $||H||_F$ . Denote  $T_0 = \operatorname{supp}(\mathbf{x}_0)$ . Set  $T_1$  as the index set which contains the indices of the ak largest elements of  $\mathbf{x}_{T_0^c}^{\#}$  in magnitude, and  $T_2$  contains the indices of the next ak largest elements, and so on. For simplicity, we set  $T_{01} := T_0 \cup T_1$  and  $\overline{H} := H_{T_{01},T_{01}}$ , where  $H_{S,T}$  denotes the sub-matrix of H with the row set S and the column set T. We claim that

$$\|H\|_{F} \le \|\bar{H}\|_{F} + \|H - \bar{H}\|_{F} \le \left(\frac{1}{a} + \frac{4}{\sqrt{a}} + 1\right) \|\bar{H}\|_{F} \le \frac{\frac{1}{a} + \frac{4}{\sqrt{a}} + 1}{c - \frac{4C}{\sqrt{a}} - \frac{C}{a}} \frac{2\epsilon}{\sqrt{m}},\tag{3.4}$$

which implies the conclusion (1.5). According to Lemma 3.2, we obtain that

$$\min_{c \in \mathbb{C}, |c|=1} \|c \cdot \mathbf{x}^{\#} - \mathbf{x}_0\|_2 \le \|\mathbf{x}^{\#} - \mathbf{x}_0\|_2 \le \sqrt{2} \|H\|_F / \|\mathbf{x}_0\|_2 \le \frac{\frac{1}{a} + \frac{4}{\sqrt{a}} + 1}{c - \frac{4C}{\sqrt{a}} - \frac{C}{a}} \frac{2\sqrt{2}\epsilon}{\sqrt{m}\|\mathbf{x}_0\|_2}$$

We next turn to prove (3.4). The first inequality in (3.4) follows from

$$\|H - \bar{H}\|_F \leq \left(\frac{1}{a} + \frac{4}{\sqrt{a}}\right) \|\bar{H}\|_F \tag{3.5}$$

and the second inequality follows from

$$\|\bar{H}\|_F \le \frac{1}{c - \frac{4C}{\sqrt{a}} - \frac{C}{a}} \frac{2\epsilon}{\sqrt{m}}.$$
(3.6)

To this end, it is enough to prove (3.5) and (3.6).

**Step 1**: We first present the proof of (3.5). A simple observation is that

$$\|H - \bar{H}\|_{F} \leq \sum_{i \geq 2, j \geq 2} \|H_{T_{i}, T_{j}}\|_{F} + \sum_{i=0, 1} \sum_{j \geq 2} \|H_{T_{i}, T_{j}}\|_{F} + \sum_{j=0, 1} \sum_{i \geq 2} \|H_{T_{i}, T_{j}}\|_{F}$$

$$= \sum_{i \geq 2, j \geq 2} \|H_{T_{i}, T_{j}}\|_{F} + 2 \sum_{i=0, 1} \sum_{j \geq 2} \|H_{T_{i}, T_{j}}\|_{F}.$$
(3.7)

We first consider the first term on the right-hand side of (3.7). Note that

$$\sum_{i\geq 2,j\geq 2} \|H_{T_i,T_j}\|_F = \sum_{i\geq 2,j\geq 2} \|\mathbf{x}_{T_i}^{\#}\|_2 \cdot \|\mathbf{x}_{T_j}^{\#}\|_2 = \left(\sum_{i\geq 2} \|\mathbf{x}_{T_i}^{\#}\|_2\right)^2 \leq \frac{1}{ak} \|\mathbf{x}_{T_0}^{\#}\|_1^2$$

$$= \frac{1}{ak} \|H_{T_0^c,T_0^c}\|_1 \leq \frac{1}{ak} \|H_{T_0,T_0}\|_1 \leq \frac{1}{a} \|H_{T_0,T_0}\|_F \leq \frac{1}{a} \|\bar{H}\|_F.$$
(3.8)

Here, the first inequality follows from  $\|\mathbf{x}_{T_i}^{\#}\|_2 \leq \|\mathbf{x}_{T_{i-1}}^{\#}\|_1/\sqrt{ak}$ , for  $i \geq 2$ . The second inequality is based on  $\|H - H_{T_0,T_0}\|_1 \leq \|H_{T_0,T_0}\|_1$ . Indeed, according to  $\|X^{\#}\|_1 \leq \|X_0\|_1$ , we have

$$\|H - H_{T_0,T_0}\|_1 = \|X^{\#} - X_{T_0,T_0}^{\#}\|_1 \le \|X_0\|_1 - \|X_{T_0,T_0}^{\#}\|_1 \le \|X_0 - X_{T_0,T_0}^{\#}\|_1 = \|H_{T_0,T_0}\|_1$$

We next turn to  $\sum_{i=0,1} \sum_{j\geq 2} \|H_{T_i,T_j}\|_F$ . Re-using  $\|\mathbf{x}_{T_j}^{\#}\|_2 \leq \|\mathbf{x}_{T_{j-1}}^{\#}\|_1/\sqrt{ak}$ , we have, for  $i \in \{0,1\}$ ,

$$\sum_{j\geq 2} \|H_{T_i,T_j}\|_F = \|\mathbf{x}_{T_i}^{\#}\|_2 \cdot \sum_{j\geq 2} \|\mathbf{x}_{T_j}^{\#}\|_2 \le \frac{1}{\sqrt{ak}} \|\mathbf{x}_{T_0}^{\#}\|_1 \|\mathbf{x}_{T_i}^{\#}\|_2 \le \frac{1}{\sqrt{a}} \|\mathbf{x}_{T_i}^{\#}\|_2 \|\mathbf{x}_{T_0}^{\#} - \mathbf{x}_0\|_2.$$
(3.9)

The last inequality is based on  $\|\mathbf{x}^{\#}\|_{1} \leq \|\mathbf{x}_{0}\|_{1}$ , which leads to

$$\|\mathbf{x}_{T_0^c}^{\#}\|_1 \le \|\mathbf{x}_0\|_1 - \|\mathbf{x}_{T_0}^{\#}\|_1 \le \|\mathbf{x}_{T_0}^{\#} - \mathbf{x}_0\|_1 \le \sqrt{k} \|\mathbf{x}_{T_0}^{\#} - \mathbf{x}_0\|_2 \le \sqrt{k} \|\mathbf{x}_{T_{01}}^{\#} - \mathbf{x}_0\|_2.$$

Substituting (3.8) and (3.9) into (3.7), we obtain that

$$\|H - \bar{H}\|_{F} \leq \sum_{i \geq 2, j \geq 2} \|H_{T_{i}, T_{j}}\|_{F} + \sum_{i=0,1} \sum_{j \geq 2} \|H_{T_{i}, T_{j}}\|_{F} + \sum_{j=0,1} \sum_{i \geq 2} \|H_{T_{i}, T_{j}}\|_{F}$$

$$\leq \frac{1}{a} \|\bar{H}\|_{F} + \frac{2\sqrt{2}}{\sqrt{a}} \|\mathbf{x}_{T_{01}}^{\#}\|_{2} \|\mathbf{x}_{T_{01}}^{\#} - \mathbf{x}_{0}\|_{2} \leq \left(\frac{1}{a} + \frac{4}{\sqrt{a}}\right) \|\bar{H}\|_{F},$$
(3.10)

where the second inequality is based on  $\|\mathbf{x}_{T_0}^{\#}\|_2 + \|\mathbf{x}_{T_1}^{\#}\|_2 \leq \sqrt{2} \|\mathbf{x}_{T_{01}}^{\#}\|_2$ , and the third inequality follows from Lemma 3.2.

**Step 2**: We next prove (3.6). Since

$$\|\mathcal{A}(H)\|_{2} \le \|\mathcal{A}(X^{\#}) - \mathbf{y}\|_{2} + \|\mathcal{A}(X_{0}) - \mathbf{y}\|_{2} \le 2\epsilon_{1}$$

we have

$$\frac{2\epsilon}{\sqrt{m}} \ge \frac{1}{\sqrt{m}} \|\mathcal{A}(H)\|_2 \ge \frac{1}{m} \|\mathcal{A}(H)\|_1 \ge \frac{1}{m} \|\mathcal{A}(\bar{H})\|_1 - \frac{1}{m} \|\mathcal{A}(H - \bar{H})\|_1.$$
(3.11)

In order to get a lower bound of  $\frac{1}{m} \|\mathcal{A}(\bar{H})\|_1 - \frac{1}{m} \|\mathcal{A}(H - \bar{H})\|_1$ , we bound  $\frac{1}{m} \|\mathcal{A}(\bar{H})\|_1$  from below and  $\frac{1}{m} \|\mathcal{A}(H - \bar{H})\|_1$  from above. As rank $(\bar{H}) \leq 2$  and  $\|\bar{H}\|_{0,2} \leq (a+1)k$ , we obtain by RIP of  $\mathcal{A}$  that

$$\frac{1}{m} \|\mathcal{A}(\bar{H})\|_1 \ge c \|\bar{H}\|_F.$$
(3.12)

Since  $H - \overline{H}$  can be written as

$$H - \bar{H} = (H_{T_0, T_{01}^c} + H_{T_{01}^c, T_0}) + (H_{T_1, T_{01}^c} + H_{T_{01}^c, T_1}) + H_{T_{01}^c, T_{01}^c}$$

we have

$$\frac{1}{m} \|\mathcal{A}(H-\bar{H})\|_{1} \leq \frac{1}{m} \|\mathcal{A}(H_{T_{0},T_{01}^{c}} + H_{T_{01}^{c},T_{0}})\|_{1} + \frac{1}{m} \|\mathcal{A}(H_{T_{1},T_{01}^{c}} + H_{T_{01}^{c},T_{1}})\|_{1} + \frac{1}{m} \|\mathcal{A}(H_{T_{01}^{c},T_{01}^{c}})\|_{1}.$$
 (3.13)

According to the RIP condition, for  $i \in \{0, 1\}$ , we have

$$\frac{1}{m} \|\mathcal{A}(H_{T_{i},T_{01}^{c}} + H_{T_{01}^{c},T_{i}})\|_{1} \leq \sum_{j\geq 2} \frac{1}{m} \|\mathcal{A}(H_{T_{i},T_{j}} + H_{T_{j},T_{i}})\|_{1} \leq \sum_{j\geq 2} C \|H_{T_{i},T_{j}} + H_{T_{j},T_{i}}\|_{F} 
\leq C \sum_{j\geq 2} (\|\mathbf{x}_{T_{i}}^{\#}(\mathbf{x}_{T_{j}}^{\#})^{*}\|_{F} + \|\mathbf{x}_{T_{j}}^{\#}(\mathbf{x}_{T_{i}}^{\#})^{*}\|_{F}) = 2C \sum_{j\geq 2} \|\mathbf{x}_{T_{i}}^{\#}\|_{2} \|\mathbf{x}_{T_{j}}^{\#}\|_{2} 
\leq \frac{2C}{\sqrt{a}} \|\mathbf{x}_{T_{i}}^{\#}\|_{2} \|\mathbf{x}_{T_{01}}^{\#} - \mathbf{x}_{0}\|_{2},$$
(3.14)

where the first inequality follows from

$$H_{T_i,T_{01}^c} + H_{T_{01}^c,T_i} = \sum_{j\geq 2} (H_{T_i,T_j} + H_{T_j,T_i}) = \sum_{j\geq 2} (\mathbf{x}_{T_i}^{\#}(\mathbf{x}_{T_j}^{\#})^* + \mathbf{x}_{T_j}^{\#}(\mathbf{x}_{T_i}^{\#})^*)$$

and the last inequality is obtained as in (3.9). To bound  $\frac{1}{m} \|\mathcal{A}(H_{T_{01}^c,T_{01}^c})\|_1$ , note that

$$H_{T_{01}^c,T_{01}^c} = \mathbf{x}_{T_{01}^c}^{\#} (\mathbf{x}_{T_{01}^c}^{\#})^*$$

with  $\|\mathbf{x}_{T_{01}}^{\#}\|_{\infty} \leq \|\mathbf{x}_{T_1}^{\#}\|_1/(ak)$ . Set  $\theta := \max\{\|\mathbf{x}_{T_1}^{\#}\|_1/(ak), \|\mathbf{x}_{T_{01}}^{\#}\|_1/(ak)\}$ . We assume that  $\Phi := \operatorname{Diag}(Ph(\mathbf{x}_{T_{01}}^{\#}))$  is the diagonal matrix with diagonal elements being the phase of  $\mathbf{x}_{T_{01}}^{\#}$ , i.e.,  $\Phi^{-1}\mathbf{x}_{T_{01}}^{\#}$  is a real vector. According to Lemma 3.1, we have

$$\Phi^{-1} \mathbf{x}_{T_{01}^{c}}^{\#} = \sum_{i=1}^{N} \lambda_{i} \mathbf{u}_{i}, \qquad 0 \le \lambda_{i} \le 1, \qquad \sum_{i=1}^{N} \lambda_{i} = 1,$$

where  $\mathbf{u}_i$  is ak-sparse, and

$$\|\mathbf{u}_i\|_1 = \|\mathbf{x}_{T_{01}^c}^{\#}\|_1, \qquad \|\mathbf{u}_i\|_{\infty} \le \theta,$$

which leads to

$$\|\mathbf{u}_i\|_2 \le \sqrt{\|\mathbf{u}_i\|_1 \|\mathbf{u}_i\|_\infty} \le \sqrt{ heta \|\mathbf{x}_{T_{01}^c}^{\#}\|_1}.$$

If  $\theta = \|\mathbf{x}_{T_1}^{\#}\|_1/(ak)$ , we have

$$\begin{aligned} \|\mathbf{u}_{i}\|_{2} &\leq \sqrt{\frac{\|\mathbf{x}_{T_{1}}^{\#}\|_{1}\|\mathbf{x}_{T_{01}}^{\#}\|_{1}}{ak}} = \sqrt{\frac{\|H_{T_{1},T_{01}}\|_{1}}{ak}} \\ &\leq \sqrt{\frac{\|H - H_{T_{0},T_{0}}\|_{1}}{ak}} \leq \sqrt{\frac{\|H_{T_{0},T_{0}}\|_{1}}{ak}} \leq \sqrt{\frac{\|H_{T_{0},T_{0}}\|_{F}}{a}} \leq \sqrt{\frac{\|\bar{H}\|_{F}}{a}}. \end{aligned}$$

If  $\theta = \|\mathbf{x}_{T_{01}^c}^{\#}\|_1/(ak)$ , we have

$$\begin{split} \|\mathbf{u}_{i}\|_{2} &\leq \sqrt{\frac{\|\mathbf{x}_{T_{01}^{c}}^{\#}\|_{1}\|\mathbf{x}_{T_{01}^{c}}^{\#}\|_{1}}{ak}} = \sqrt{\frac{\|H_{T_{01}^{c},T_{01}^{c}}\|_{1}}{ak}} \\ &\leq \sqrt{\frac{\|H - H_{T_{0},T_{0}}\|_{1}}{ak}} \leq \sqrt{\frac{\|H_{T_{0},T_{0}}\|_{1}}{ak}} \leq \sqrt{\frac{\|H_{T_{0},T_{0}}\|_{F}}{a}} \leq \sqrt{\frac{\|\bar{H}\|_{F}}{a}}. \end{split}$$

Thus we can obtain that

$$\|\mathbf{u}_i\|_2 \le \sqrt{\frac{\|\bar{H}\|_F}{a}}, \text{ for } i = 1, \dots, N.$$
 (3.15)

Since

$$H_{T_{01}^{c},T_{01}^{c}} = \mathbf{x}_{T_{01}^{c}}^{\#} (\mathbf{x}_{T_{01}^{c}}^{\#})^{*} = \left(\sum_{i=1}^{N} \lambda_{i} \Phi \mathbf{u}_{i}\right) \left(\sum_{i=1}^{N} \lambda_{i} \Phi \mathbf{u}_{i}\right)^{*}$$
$$= \sum_{i < j} \lambda_{i} \lambda_{j} \Phi(\mathbf{u}_{i} \mathbf{u}_{j}^{*} + \mathbf{u}_{j} \mathbf{u}_{i}^{*}) \Phi^{-1} + \sum_{i} \lambda_{i}^{2} \Phi \mathbf{u}_{i} \mathbf{u}_{i}^{*} \Phi^{-1},$$

based on the RIP condition, we can obtain that

$$\frac{1}{m} \|\mathcal{A}(H_{T_{01}^{c},T_{01}^{c}})\|_{1} \leq \sum_{i < j} C\lambda_{i}\lambda_{j} \|(\mathbf{u}_{i}\mathbf{u}_{j}^{*}+\mathbf{u}_{j}\mathbf{u}_{i}^{*})\|_{F} + \sum_{i} C\lambda_{i}^{2} \|\mathbf{u}_{i}\mathbf{u}_{i}^{*}\|_{F} \\
\leq \sum_{i < j} 2C\lambda_{i}\lambda_{j} \|\mathbf{u}_{i}\|_{2} \|\mathbf{u}_{j}\|_{2} + \sum_{i} C\lambda_{i}^{2} \|\mathbf{u}_{i}\|_{2}^{2} \\
\leq C \frac{\|\bar{H}\|_{F}}{a} \left(\sum_{i} \lambda_{i}\right)^{2} = C \frac{\|\bar{H}\|_{F}}{a},$$
(3.16)

where the third line follows from (3.15). Now combining (3.14) and (3.16), we obtain that

$$\frac{1}{m} \|\mathcal{A}(H - \bar{H})\|_{1} \leq \frac{1}{m} \|\mathcal{A}(H_{T_{0}, T_{01}^{c}} + H_{T_{01}^{c}, T_{0}})\|_{1} + \frac{1}{m} \|\mathcal{A}(H_{T_{1}, T_{01}^{c}} + H_{T_{01}^{c}, T_{1}})\|_{1} + \frac{1}{m} \|\mathcal{A}(H_{T_{00}^{c}, T_{01}^{c}})\|_{1} \\
\leq \frac{2C}{\sqrt{a}} \|\mathbf{x}_{T_{0}}^{\#}\|_{2} \|\mathbf{x}_{T_{01}}^{\#} - \mathbf{x}_{0}\|_{2} + \frac{2C}{\sqrt{a}} \|\mathbf{x}_{T_{1}}^{\#}\|_{2} \|\mathbf{x}_{T_{01}}^{\#} - \mathbf{x}_{0}\|_{2} + C \frac{\|\bar{H}\|_{F}}{a} \\
\leq \frac{2\sqrt{2}C}{\sqrt{a}} \|\mathbf{x}_{T_{01}}^{\#}\|_{2} \|\mathbf{x}_{T_{01}}^{\#} - \mathbf{x}_{0}\|_{2} + C \frac{\|\bar{H}\|_{F}}{a} \\
\leq C \left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right) \|\bar{H}\|_{F}.$$
(3.17)

The last inequality uses Lemma 3.2. Based on (3.12), (3.17) and (3.11), we obtain that

$$\frac{2\epsilon}{\sqrt{m}} \ge \frac{1}{m} \|\mathcal{A}(\bar{H})\|_1 - \frac{1}{m} \|\mathcal{A}(H - \bar{H})\|_1$$
$$\ge c \|\bar{H}\|_F - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right) \|\bar{H}\|_F = \left(c - \frac{4C}{\sqrt{a}} - \frac{C}{a}\right) \|\bar{H}\|_F$$

According to the condition (1.4), it implies that

$$\|\bar{H}\|_F \le \frac{1}{c - \frac{4C}{\sqrt{a}} - \frac{C}{a}} \frac{2\epsilon}{\sqrt{m}}$$

Thus, we arrive at the conclusion (3.6).  $\Box$ 

## References

Richard Baraniuk, Mark Davenport, Ronald DeVore, Michael Wakin, A simple proof of the restricted isometry property for random matrices, Constr. Approx. 28 (3) (2008) 253–263.

- [2] T. Tony Cai, Xiaodong Li, Zongming Ma, Optimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flow, Ann. Stat. 44 (5) (2016) 2221–2251.
- [3] T. Tony Cai, Anru Zhang, Sparse representation of a polytope and recovery in sparse signals and low-rank matrices, IEEE Trans. Inf. Theory 60 (1) (2014) 122–132.
- [4] Emmanuel J. Candès, Justin Romberg, Terence Tao, Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure Appl. Math. 59 (8) (2006) 1207–1223.
- [5] Yonina C. Eldar, Shahar Mendelson, Phase retrieval: stability and recovery guarantees, Appl. Comput. Harmon. Anal. 36 (3) (2014) 473–494.
- [6] Bing Gao, Yang Wang, Zhiqiang Xu, Stable signal recovery from phaseless measurements, J. Fourier Anal. Appl. 22 (4) (2016) 787–808.
- [7] Mark Iwen, Aditya Viswanathan, Yang Wang, Robust sparse phase retrieval made easy, Appl. Comput. Harmon. Anal. 42 (1) (2015) 135–142.
- [8] Ran Lu, On the strong restricted isometry property of Bernoulli random matrices, J. Approx. Theory 245 (2019) 1–22.
- [9] Matthew L. Moravec, Justin K. Romberg, Richard G. Baraniuk, Compressive phase retrieval, Proc. SPIE 6701 (2007).
- [10] R. Vershynin, Introduction to the Non-asymptotic Analysis of Random Matrices, Cambridge University Press, 2010.
- [11] Vladislav Voroninski, Zhiqiang Xu, A strong restricted isometry property, with an application to phaseless compressed sensing, Appl. Comput. Harmon. Anal. 40 (2) (2016) 386–395.
- [12] Gang Wang, Liang Zhang, Georgios B. Giannakis, Mehmet Akcakaya, Jie Chen, Sparse phase retrieval via truncated amplitude flow, IEEE Trans. Signal Process. 66 (2) (2018) 479–491.
- [13] Yang Wang, Zhiqiang Xu, Phase retrieval for sparse signals, Appl. Comput. Harmon. Anal. 37 (3) (2014) 531–544.
- [14] Guangwu Xu, Zhiqiang Xu, On the  $\ell_1$ -norm invariant convex k-sparse decomposition of signals, J. Oper. Res. Soc. China 1 (2013) 537–541.
- [15] P. Schniter, S. Rangan, Compressive phase retrieval via generalized approximate message passing, in: Proceedings of Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, Oct. 2012.
- [16] Zai Yang, Cishen Zhang, Lihua Xie, Robust compressive phase retrieval via L1 minimization with application to image reconstruction, arXiv:1302.0081.